Results 41 to 50 of about 9,659,868 (257)
Generalized Fibonacci Sequences for Elliptic Curve Cryptography
The Fibonacci sequence is a well-known sequence of numbers with numerous applications in mathematics, computer science, and other fields. In recent years, there has been growing interest in studying Fibonacci-like sequences on elliptic curves.
Zakariae Cheddour+2 more
doaj +1 more source
On $k$-Fibonacci balancing and $k$-Fibonacci Lucas-balancing numbers
The balancing number $n$ and the balancer $r$ are solution of the Diophantine equation $$1+2+\cdots+(n-1) = (n+1)+(n+2)+\cdots+(n+r). $$ It is well known that if $n$ is balancing number, then $8n^2 + 1$ is a perfect square and its positive square root is
S.E. Rihane
doaj +1 more source
On the Bicomplex $k$-Fibonacci Quaternions
In this paper, bicomplex $k$-Fibonacci quaternions are defined. Also, some algebraic properties of bicomplex $k$-Fibonacci quaternions are investigated.
Fügen Torunbalcı Aydın
doaj +1 more source
Construction of dual-generalized complex Fibonacci and Lucas quaternions
The aim of this paper is to construct dual-generalized complex Fibonacci and Lucas quaternions. It examines the properties both as dual-generalized complex number and as quaternion. Additionally, general recurrence relations, Binet's formulas, Tagiuri's (
G.Y. Şentürk, N. Gürses, S. Yüce
doaj +1 more source
On Fibonacci (k,p)-Numbers and Their Interpretations
In this paper, we define new kinds of Fibonacci numbers, which generalize both Fibonacci, Jacobsthal, Narayana numbers and Fibonacci p-numbers in the distance sense, using the definition of a distance between numbers by a recurrence relation according to
Berke Cengiz, Yasemin Taşyurdu
doaj +1 more source
On the arrowhead-Fibonacci numbers
AbstractIn this paper, we define the arrowhead-Fibonacci numbers by using the arrowhead matrix of the characteristic polynomial of thek-step Fibonacci sequence and then we give some of their properties. Also, we study the arrowhead-Fibonacci sequence modulomand we obtain the cyclic groups from the generating matrix of the arrowhead-Fibonacci numbers ...
Deveci, Omur, GÜLTEKİN, İnci
openaire +4 more sources
Edge-Disjoint Fibonacci Trees in Hypercube
The Fibonacci tree is a rooted binary tree whose number of vertices admit a recursive definition similar to the Fibonacci numbers. In this paper, we prove that a hypercube of dimension h admits two edge-disjoint Fibonacci trees of height h, two edge ...
Indhumathi Raman, Lakshmanan Kuppusamy
doaj +1 more source
Three new classes of binomial Fibonacci sums [PDF]
In this paper, we introduce three new classes of binomial sums involving Fibonacci (Lucas) numbers and weighted binomial coefficients. One particular result is linked to a problem proposal recently published in the journal The Fibonacci Quarterly.
Robert Frontczak
doaj +1 more source
On a generalization of the Pell sequence [PDF]
The Pell sequence $(P_n)_{n=0}^{\infty}$ is the second order linear recurrence defined by $P_n=2P_{n-1}+P_{n-2}$ with initial conditions $P_0=0$ and $P_1=1$.
Jhon J. Bravo+2 more
doaj +1 more source
Fibonacci Numbers and Identities
By investigating a recurrence relation about functions, we first give alternative proofs of various identities on Fibonacci numbers and Lucas numbers, and then, make certain well known identities visible via certain trivalent graph associated to the recurrence relation.
Lang, Cheng Lien, Lang, Mong Lung
openaire +2 more sources