Results 21 to 30 of about 156 (151)
Ultra‐short pulsed laser processing (ULSP) enables scalable, open‐air fabrication of self‐organized, quasi‐periodic micro/nanostructures on copper using 100 µm laser beams, orders of magnitude larger than the resulting surface features. Integrated into ultra‐thin, wick‐free vapor chambers, these laser‐functionalized surfaces dramatically enhance ...
Anish Pal +7 more
wiley +1 more source
Zinc‐air batteries demonstrate great potential for sustainable energy storage but face major anode‐related challenges. This review provides a mechanism‐driven overview of zinc anode interfacial issues, e.g. dendrite formation, passivation, self‐corrosion, and hydrogen evolution; and explores advances in electrode, surface, and electrolyte engineering ...
Hong Zhao +2 more
wiley +1 more source
Thermal transport in Ru and W thin films is studied using steady‐state thermoreflectance, ultrafast pump–probe spectroscopy, infrared‐visible spectroscopy, and computations. Significant Lorenz number deviations reveal strong phonon contributions, reaching 45% in Ru and 62% in W.
Md. Rafiqul Islam +14 more
wiley +1 more source
This work develops flexible zinc‐ion batteries (FZIBs) using a zincophilic/hydrophobic polymer (thermoplastic polycarbonate‐based polyurethane, TPCU) to protect Zn powder anodes and MXene/Silk (MXS) as flexible current collectors. The designed TPCU‐ZnP@MXS structure enables uniform Zn deposition, yielding dendrite‐free anodes with stable cycling ...
Zixuan Yang +8 more
wiley +1 more source
Side Reaction Pathway Modulation for Hydrogen Evolution‐Free Aqueous Zn‐Ion Batteries
A ZnO–TeO2–Te ternary composite layer with a unique rice grain‐like morphology is spontaneously formed on the Zn anode via telluric acid additive. This functional interphase effectively suppresses side reactions such as zinc hydroxide sulfate formation, hydrogen evolution, and Zn corrosion, enabling highly reversible and stable Zn metal cycling in ...
Young‐Hoon Lee +3 more
wiley +1 more source
Amorphous High Entropy Alloy Nanosheets Enabling Robust Li–S Batteries
Amorphous ultrathin FeCoNiMoW high entropy alloy nanosheets are incorporated into the polypropylene separator of lithium‐sulfur batteries, enhancing their capacity, rate performance, and cycling stability. Abstract High‐entropy alloys (HEAs) show great potential for catalyzing complex multi‐step reactions, but optimizing their parameters, i.e ...
Ren He +20 more
wiley +1 more source
Ultralight 3D nanofibrous aerogels embedded with metal‐organic frameworks effectively capture and neutralize toxic gases and organophosphonates. Incorporating mesoporous UiO‐66‐NH2 and HKUST‐1 into PAN/PVP fibers enables high MOF loading while maintaining mechanical strength and structural stability.
Mai O. Abdelmigeed +6 more
wiley +1 more source
In situ monitoring of bulk photoalignment reveals how molecular weight, azobenzene content, cooling rate, and thickness govern ordering in main‐chain liquid crystalline polymers. Optimized copolymers exceed conventional thickness limits, maintaining stable alignment up to 130 µm with high energy efficiency and reversible optical patterning.
Jaechul Ju +3 more
wiley +1 more source
Photo‐Switching Thermal and Lithium‐Ion Conductivity in Azobenzene Polymers
Light‐responsive azobenzene polymers control thermal and ionic transport simultaneously through structural transitions. UV illumination disrupts π–π stacking, converting crystalline trans states to amorphous cis configurations. Thermal conductivity drops from 0.45 to 0.15 W·m−1·K−1 while Li+ diffusivity increases 100 fold. This dual transport switching
Jaeuk Sung +7 more
wiley +1 more source
The article reviews laser‐processed carbons from various precursors, processing mechanism and their application in advanced batteries. The laser process is chemical free, fast, and scalable, enabling improved battery performance and stability for Li, Na, and Zn battery technologies.
Sujit Deshmukh +2 more
wiley +1 more source

