Results 91 to 100 of about 332 (162)
Red‐light‐activated Ir1 overcomes hypoxia tolerance and adapts to the immunosuppressive tumor microenvironment, converting immunologically cold tumors into inflamed hot microenvironments. This conversion is driven by synergistic induction of immunogenic cell death through coordinated ferroptosis‐necroptosis pathways and spatiotemporally controlled ...
Long‐Bo Yu +8 more
wiley +1 more source
Fluorinated Carnitine Derivatives as Tools to Visualise Carnitine Transport and Metabolism
Fluorinated carnitines, fluoromethyl carnitine (FMC) and [18F]fluoromethyl carnitine ([18F]FMC), are synthesised and established as powerful probes to interrogate carnitine biology. The multimodal detection facilitated by fluorine labelling, including 19F NMR, mass spectrometry, and positron emission tomography imaging, allowed for visualisation of ...
Richard S. Edwards +8 more
wiley +1 more source
Label‐Free Molecular Characterization of Protein Aggregates in Differentiated Astrocytes
Mid‐infrared photothermal microscopy enables label‐free structural, molecular, and functional imaging of protein aggregates in astrocyte cells. The processes of astrocytes differentiated on a nanomaterial interface are characterized by α‐helical signatures combined with enhanced interfacial thermal resistance properties, while the cell soma of non ...
Panagis D. Samolis +9 more
wiley +1 more source
AI‐Driven Acceleration of Fluorescence Probe Discovery
We present PROBY, an AI model trained on large‐scale datasets to predict key photophysical properties and accelerate the discovery of target‐specific fluorescent probes. By screening a target‐annotated library, PROBY identifies candidate probes for diverse targets and could guide probe optimization, enabling a range of in vitro and in vivo imaging ...
Xuefeng Jiang +18 more
wiley +1 more source
Wave‐Partition‐Governed Dual‐Site Spallation in Single Crystals
Crystalline anisotropy shapes shock‐wave propagation and the resulting damage evolution in single crystals. Large‐scale molecular dynamics and damage modeling uncover a dual‐spallation mechanism driven by anisotropic elasticplastic wave separation, which mitigates damage accumulation.
Youlin Zhu +6 more
wiley +1 more source

