Results 11 to 20 of about 61 (61)
Agraphia, as a neuropsychological symptom of ALS, especially ALS with dementia (ALS‐D), has recently attracted more attention. However, the brain lesion responsible has not been identified. Here we present an autopsy case of ALS‐D of a patient with obvious agraphia, without aphasia, that also presented cerebrospinal degeneration with TDP‐43‐pathology ...
Kenji Ishihara +5 more
wiley +1 more source
Equivalent norms of Herz‐type Besov and Triebel‐Lizorkin spaces
In this paper the author obtains equivalent norms of Herz‐type Besov and Triebel‐Lizorkin spaces, which are generalizations of well‐known Herz‐type spaces and inhomogeneous Besov and Triebel‐Lizorkin spaces.
Jingshi Xu, Hans Triebel
wiley +1 more source
Continuity envelopes for the spaces of generalised smoothness Bpq(s,Ψ)(ℝn) and Fpq(s,Ψ)(ℝn) are studied in the so‐called supercritical s = 1 + n/p, paralleling recent developments for a corresponding limiting case for local growth envelopes of spaces of such a type. In addition, the power of the concept is used in proving conditions for some embeddings
António M. Caetano +2 more
wiley +1 more source
We consider a generalized version of the small Lebesgue spaces, introduced in [5] as the associate spaces of the grand Lebesgue spaces. We find a simplified expression for the norm, prove relevant properties, compute the fundamental function and discuss the comparison with the Orlicz spaces.
Claudia Capone +2 more
wiley +1 more source
Traces of multipliers in pairs of weighted Sobolev spaces
We prove that the pointwise multipliers acting in a pair of fractional Sobolev spaces form the space of boundary traces of multipliers in a pair of weighted Sobolev space of functions in a domain.
Vladimir Maz′ya +2 more
wiley +1 more source
Spaces of complex functions and vector measures in incomplete spaces
It is known that the space L1(μ) of complex functions which are integrable with respect to a vector measure μ taking values in a (not neessarily complete) locally convex space is not an ideal, in general. We discuss several natural properties which L1(μ) may or may not possess and consider various implications between these properties. For a particular
Werner Riker +2 more
wiley +1 more source
Spaces of Test Functions via the STFT
We characterize several classes of test functions, among them Björck′s ultra‐rapidly decaying test functions and the Gelfand‐Shilov spaces of type S, in terms of the decay of their short‐time Fourier transform and in terms of their Gabor coefficients.
Karlheinz Gröchenig +2 more
wiley +1 more source
A trace inequality for generalized potentials in Lebesgue spaces with variable exponent
A trace inequality for the generalized Riesz potentials Iα(x) is established in spaces Lp(x) defined on spaces of homogeneous type. The results are new even in the case of Euclidean spaces. As a corollary a criterion for a two‐weighted inequality in classical Lebesgue spaces for potentials Iα(x) defined on fractal sets is derived.
David E. Edmunds +3 more
wiley +1 more source
In the first part of this paper we present a representation theorem for the directional derivative of the metric projection operator in an arbitrary Hilbert space. As a consequence of the representation theorem, we present in the second part the development of the theory of projected dynamical systems in infinite dimensional Hilbert space. We show that
George Isac +2 more
wiley +1 more source
Note on the paper “Regulated domains and Bergman type projections”
We show that the sufficient condition of the above mentioned paper is also necessary for the boundedness of Bergman type projections on a class of regulated domains.
Jari Taskinen, Miroslav Englis
wiley +1 more source

