Results 101 to 110 of about 385 (166)
The formation of insulating Li2S during discharge in solid‐state lithium–sulfur batteries passivate reaction sites and limits sulfur utilization. In this work, a microstructure‐resolved modeling framework coupling transport and reaction kinetics is developed to predict charge–discharge behavior and reveal particle‐scale species evolution and incomplete
Arpan K. Sharma +4 more
wiley +1 more source
On the Ordering Mechanism of Cu+ in 2D van der Waals Multiferroic CuCrP2S6
Temperature‐dependent X‐ray single‐crystal diffuse scattering measurements of CuCrP2S6 in the (H, K, 0) plane reveal the gradual emergence and strengthening of short‐range order upon cooling from 230 to 170 K. At intermediate temperatures, diffuse features become pronounced and eventually lock into sharp incommensurate satellite reflections, indicating
Jiasen Guo +5 more
wiley +1 more source
Self‐Healing Liquid Metal‐Elastomer Circuits for Robust Underwater Electronics
Soft electronics for underwater environments require materials that maintain function under mechanical strain and environmental exposure. This work shows that liquid metal‐elastomer composites preserve, or even improve, their electromechanical and self‐healing performance after aging in ambient, freshwater, and saltwater, highlighting their promise for
Ella T. Williams +2 more
wiley +1 more source
Controlled Interfacial Stress Platform for Electrochemical‐Mechanical Coupling Measurements
Understanding electrochemical‐mechanical coupling in solid‐state batteries is vital for predicting their performance, degradation, and safety. Conventional screw‐jig platforms provide data but lack insights into stress effects on individual couplings.
Bhuvsmita Bhargava +9 more
wiley +1 more source
Beyond Silicon: Toward Sustainable, NIR‐II, and Conformable Organic Photodiodes
In this perspective, a strategic shift in organic photodetector (OPD) research is proposed: instead of the incremental advances in silicon's stronghold arena, the most impactful future for OPDs lies in addressing silicon's intrinsic limitations, i.e., detection in the longer wavelength range above silicon's coverage (>1100 nm, termed as near infrared ...
Hrisheekesh Thachoth Chandran +7 more
wiley +1 more source

