Results 81 to 90 of about 228 (169)

Animal‐Based Brands Taking the Plant‐Based Opportunity: A Tasting Experiment Exploring Consumer Acceptance of Plant‐Based Brand Extensions

open access: yesAgribusiness, EarlyView.
ABSTRACT This study investigates how consumer taste and brand equity perceptions shape the acceptance of plant‐based milk products. Using a blind/informed tasting experiment, we evaluated consumers' willingness to buy (WTB) and taste perception of a plant‐based milk alternative produced by a traditional dairy brand, compared with competing plant‐based ...
Federico Parmiggiani   +6 more
wiley   +1 more source

Exploring Quantum Support Vector Regression for Predicting Hydrogen Storage Capacity of Nanoporous Materials

open access: yesAdvanced Intelligent Discovery, EarlyView.
In this study we employed support vector regressor and quantum support vector regressor to predict the hydrogen storage capacity of metal–organic frameworks using structural and physicochemical descriptors. This study presents a comparative analysis of classical support vector regression (SVR) and quantum support vector regression (QSVR) in predicting ...
Chandra Chowdhury
wiley   +1 more source

Excess Asset Returns Predictability in an Emerging Economy: The Case of Colombia

open access: yesRevista de Economía del Rosario
The study examines the predictive capacity of book-to-market and earnings-to-price ratios in forecasting excess asset returns in an emerging market economy like Colombia’s.
Martha López   +1 more
doaj   +1 more source

Flexible Memory: Progress, Challenges, and Opportunities

open access: yesAdvanced Intelligent Discovery, EarlyView.
Flexible memory technology is crucial for flexible electronics integration. This review covers its historical evolution, evaluates rigid systems, proposes a flexible memory framework based on multiple mechanisms, stresses material design's role, presents a coupling model for performance optimization, and points out future directions.
Ruizhi Yuan   +5 more
wiley   +1 more source

Artificial Intelligence‐Driven Insights into Electrospinning: Machine Learning Models to Predict Cotton‐Wool‐Like Structure of Electrospun Fibers

open access: yesAdvanced Intelligent Discovery, EarlyView.
Electrospinning allows the fabrication of fibrous 3D cotton‐wool‐like scaffolds for tissue engineering. Optimizing this process traditionally relies on trial‐and‐error approaches, and artificial intelligence (AI)‐based tools can support it, with the prediction of fiber properties. This work uses machine learning to classify and predict the structure of
Paolo D’Elia   +3 more
wiley   +1 more source

Topology‐Aware Machine Learning for High‐Throughput Screening of MOFs in C8 Aromatic Separation

open access: yesAdvanced Intelligent Discovery, EarlyView.
We screened 15,335 Computation‐Ready, Experimental Metal–Organic Frameworks (CoRE‐MOFs) using a topology‐aware machine learning (ML) model that integrates structural, chemical, pore‐size, and topological descriptors. Top‐performing MOFs exhibit aromatic‐enriched cavities and open metal sites that enable π–π and C–H···π interactions, serving as ...
Yu Li, Honglin Li, Jialu Li, Wan‐Lu Li
wiley   +1 more source

A Generalized Framework for Data‐Efficient and Extrapolative Materials Discovery for Gas Separation

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study introduces an iterative supervised machine learning framework for metal‐organic framework (MOF) discovery. The approach identifies over 97% of the best performing candidates while using less than 10% of available data. It generalizes across diverse MOF databases and gas separation scenarios.
Varad Daoo, Jayant K. Singh
wiley   +1 more source

Accelerating Biosensor Discovery: A Computationally‐Driven Pipeline for Microplastics Monitoring

open access: yesAdvanced Intelligent Discovery, EarlyView.
A computationally guided pipeline unites molecular simulation, synthetic biology, electrochemical engineering, and machine learning to accelerate biosensor discovery. A Bacillus anthracis carbohydrate‐binding module is used to develop a high‐performance micro‐ and nanoplastics sensor with greatly reduced error and variability.
Gabriel X. Pereira   +13 more
wiley   +1 more source

Advancing Efficient Error Reduction in DNA Data Storage Systems with Deep Learning‐Based Denoising Models

open access: yesAdvanced Intelligent Discovery, EarlyView.
Deep learning‐based denoising models are applied to DNA data storage systems to enhance error reduction and data fidelity. By integrating DnCNN with DNA sequence encoding methods, the study demonstrates significant improvements in image quality and correction of substitution errors, revealing a promising path toward robust and efficient DNA‐based ...
Seongjun Seo   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy