Results 41 to 50 of about 5,716 (169)
Geometrical Structure in a Perfect Fluid Spacetime with Conformal Ricci-Yamabe Soliton
The present paper aims to deliberate the geometric composition of a perfect fluid spacetime with torse-forming vector field ξ in connection with conformal Ricci–Yamabe metric and conformal η-Ricci–Yamabe metric.
Pengfei Zhang +4 more
semanticscholar +1 more source
Almost $\eta-$Ricci Solitons on Pseudosymmetric Lorentz Sasakian Space Forms
In this paper, we consider pseudosymmetric Lorentz Sasakian space forms admitting almost $\eta-$Ricci solitons in some curvature tensors. Ricci pseudosymmetry concepts of Lorentz Sasakian space forms admits $\eta-$Ricci soliton have introduced according ...
Mehmet Atçeken, Tuğba Mert
doaj +1 more source
On second variation of Perelman's Ricci shrinker entropy [PDF]
In this paper we provide a detailed proof of the second variation formula, essentially due to Richard Hamilton, Tom Ilmanen and the first author, for Perelman's $\nu$-entropy. In particular, we correct an error in the stability operator stated in Theorem
Cao, Huai-Dong, Zhu, Meng
core +1 more source
η-Ricci Solitons on Sasakian 3-Manifolds
In this paper we study η-Ricci solitons on Sasakian 3-manifolds. Among others we prove that an η-Ricci soliton on a Sasakian 3-manifold is an η-Einstien manifold.
Majhi Pradip +2 more
doaj +1 more source
Contact-Complex Riemannian Submersions
A submersion from an almost contact Riemannian manifold to an almost Hermitian manifold, acting on the horizontal distribution by preserving both the metric and the structure, is, roughly speaking a contact-complex Riemannian submersion. This paper deals
Cornelia-Livia Bejan +2 more
doaj +1 more source
A compactness theorem for complete Ricci shrinkers [PDF]
We prove precompactness in an orbifold Cheeger-Gromov sense of complete gradient Ricci shrinkers with a lower bound on their entropy and a local integral Riemann bound. We do not need any pointwise curvature assumptions, volume or diameter bounds.
B. Chow +31 more
core +4 more sources
Ricci flow coupled with harmonic map flow [PDF]
We investigate a new geometric flow which consists of a coupled system of the Ricci flow on a closed manifold M with the harmonic map flow of a map phi from M to some closed target manifold N with a (possibly time-dependent) positive coupling constant ...
Müller, Reto
core +3 more sources
We introduce and study a new type of soliton with a potential Reeb vector field on Riemannian manifolds with an almost paracontact structure corresponding to an almost paracomplex structure.
Hristo Manev, Mancho Manev
doaj +1 more source
Certain results for η-Ricci Solitons and Yamabe Solitons on quasi-Sasakian 3-Manifolds
We classify quasi-Sasakian 3-manifold with proper η-Ricci soliton and investigate its geometrical properties. Certain results of Yamabe soliton on such manifold are also presented.
Sunil Kumar Yadav +2 more
doaj +1 more source
η-Ricci Solitons on 3-dimensional Trans-Sasakian Manifolds
In this paper, we study \( \eta \)-Ricci solitons on 3-dimensional trans-Sasakian manifolds. Firstly we give conditions for the existence of these geometric structures and then observe that they provide examples of \( \eta \)-Einstein manifolds.
Sampa Pahan
doaj +1 more source

