Results 41 to 50 of about 1,401 (109)
Rooted tree maps and the derivation relation for multiple zeta values
Rooted tree maps assign to an element of the Connes-Kreimer Hopf algebra of rooted trees a linear map on the noncommutative polynomial algebra in two letters.
Bachmann, Henrik, Tanaka, Tatsushi
core +1 more source
Background – Inhibition of the Janus kinase (JAK) pathway is a well‐established option for canine atopic dermatitis (cAD). Objective – To evaluate the efficacy and safety of ilunocitinib, a novel JAK inhibitor for the control of pruritus and skin lesions in client‐owned dogs with cAD.
Sophie Forster+5 more
wiley +1 more source
This paper describes two approaches to modelling lung disease: one based on a multi‐compartment statistical model with a log normal distribution of ventilation perfusion ratio (V˙/Q˙) values; and the other on a bifurcating tree which emulates the anatomical structure of the lung. In the statistical model, the distribution becomes bimodal, when the V˙/Q˙
B. S. Brook+5 more
wiley +1 more source
The Product Connectivity Banhatti Index of A Graph
Let G = (V, E) be a connected graph with vertex set V (G) and edge set E(G). The product connectivity Banhatti index of a graph G is defined as, PB(G)=∑ue1dG(u)dG(e)$PB(G) = \sum\nolimits_{ue} {{1 \over {\sqrt {{d_G}(u){d_G}(e)} }}}$ where ue means that ...
Kulli V.R.+2 more
doaj +1 more source
Graph theory combined with chemistry provides a strong framework for modeling and assessing chemical compounds. By representing molecules as graphs and applying topological indices, chemists can gain profound insights into the physical and chemical characteristics of compounds.
Kalpana R.+2 more
wiley +1 more source
Determinantal generating functions of colored spanning forests
The color type of a spanning forest of a graph with colored edges is defined and, subsequently, it is proved that the generating function of such spanning forests is obtained as the formal expansion of a certain determinant. An analogous determinantal expansion yields the generating function of all spanning forests of a given color type that contain a ...
Gregory M. Constantine, Marius G. Buliga
wiley +1 more source
Trees with Unique Least Central Subtrees
A subtree S of a tree T is a central subtree of T if S has the minimum eccentricity in the join-semilattice of all subtrees of T. Among all subtrees lying in the join-semilattice center, the subtree with minimal size is called the least central subtree ...
Kang Liying, Shan Erfang
doaj +1 more source
On General Sum‐Connectivity Index and Number of Segments of Fixed‐Order Chemical Trees
Nowadays, one of the most active areas in mathematical chemistry is the study of the mathematical characteristics associated with molecular descriptors. The primary objective of the current study is to find the largest value of χα of graphs in the class of all fixed‐order chemical trees with a particular number of segments for α > 1, where χα is the ...
Muzamil Hanif+5 more
wiley +1 more source
The chromatic sum of a graph: history and recent developments
The chromatic sum of a graph is the smallest sum of colors among all proper colorings with natural numbers. The strength of a graph is the minimum number of colors necessary to obtain its chromatic sum. A natural generalization of chromatic sum is optimum cost chromatic partition (OCCP) problem, where the costs of colors can be arbitrary positive ...
Ewa Kubicka
wiley +1 more source
A Note on the Interval Function of a Disconnected Graph
In this note we extend the Mulder-Nebeský characterization of the interval function of a connected graph to the disconnected case. One axiom needs to be adapted, but also a new axiom is needed in addition.
Changat Manoj+3 more
doaj +1 more source