Results 21 to 30 of about 67 (56)
The General Position Problem on Kneser Graphs and on Some Graph Operations
A vertex subset S of a graph G is a general position set of G if no vertex of S lies on a geodesic between two other vertices of S. The cardinality of a largest general position set of G is the general position number (gp-number) gp(G) of G.
Ghorbani Modjtaba +5 more
doaj +1 more source
Structures of W(2.2) Lie conformal algebra
The purpose of this paper is to study W(2, 2) Lie conformal algebra, which has a free ℂ[∂]-basis {L, M} such that [LλL]=(∂+2λ)L,[LλM]=(∂+2λ)M,[MλM]=0$\begin{equation}[{L_\lambda }L] = (\partial + 2\lambda )L,[{L_\lambda }M] = (\partial + 2\lambda )M,[{M_\
Yuan Lamei, Wu Henan
doaj +1 more source
Soft covering based rough graphs and corresponding decision making
Soft set theory and rough set theory are two new tools to discuss uncertainty. Graph theory is a nice way to depict certain information. Particularly soft graphs serve the purpose beautifully.
Park Choonkil +5 more
doaj +1 more source
Generalized 4-connectivity of hierarchical star networks
The connectivity is an important measurement for the fault-tolerance of a network. The generalized connectivity is a natural generalization of the classical connectivity. An SS-tree of a connected graph GG is a tree T=(V′,E′)T=\left(V^{\prime} ,E^{\prime}
Wang Junzhen, Zou Jinyu, Zhang Shumin
doaj +1 more source
Weak Total Resolvability In Graphs
A vertex v ∈ V (G) is said to distinguish two vertices x, y ∈ V (G) of a graph G if the distance from v to x is di erent from the distance from v to y.
Casel Katrin +3 more
doaj +1 more source
Integral Laplacian graphs with a unique repeated Laplacian eigenvalue, I
The set Si,n={0,1,2,…,n−1,n}\{i}{S}_{i,n}=\left\{0,1,2,\ldots ,n-1,n\right\}\setminus \left\{i\right\}, 1⩽i⩽n1\leqslant i\leqslant n, is called Laplacian realizable if there exists an undirected simple graph whose Laplacian spectrum is Si,n{S}_{i,n}. The
Hameed Abdul, Tyaglov Mikhail
doaj +1 more source
On Grundy Total Domination Number in Product Graphs
A longest sequence (v1, . . ., vk) of vertices of a graph G is a Grundy total dominating sequence of G if for all i, N(υj)\∪j=1i-1N(υj)≠∅N({\upsilon _j})\backslash \bigcup\nolimits_{j = 1}^{i - 1} {N({\upsilon _j})} \ne \emptyset .
Brešar Boštjan +8 more
doaj +1 more source
Cyclic Cordial Labeling for the Lemniscate Graphs and Their Second Powers
A lemniscate graph, usually denoted by Ln,m, is defined as a union of two cycles Cn and Cm that share a common vertex. A simple graph is called cyclic group cordial if we can provide a three elements’ cyclic group labeling satisfying certain conditions.
M. A. AbdAllah +4 more
wiley +1 more source
A Note on the Thue Chromatic Number of Lexicographic Products of Graphs
A sequence is called non-repetitive if none of its subsequences forms a repetition (a sequence r1r2⋯r2n such that ri = rn+i for all 1 ≤ i ≤ n). Let G be a graph whose vertices are coloured.
Peterin Iztok +3 more
doaj +1 more source
On Well-Covered Direct Products
A graph G is well-covered if all maximal independent sets of G have the same cardinality. In 1992 Topp and Volkmann investigated the structure of well-covered graphs that have nontrivial factorizations with respect to some of the standard graph products.
Kuenzel Kirsti, Rall Douglas F.
doaj +1 more source

