Results 21 to 30 of about 929 (40)
Increasing subsequences, matrix loci and Viennot shadows
Let ${\mathbf {x}}_{n \times n}$ be an $n \times n$ matrix of variables, and let ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]$ be the polynomial ring in these variables over a field ${\mathbb {F}}$ .
Brendon Rhoades
doaj +1 more source
An update on Haiman’s conjectures
We revisit Haiman’s conjecture on the relations between characters of Kazdhan–Lusztig basis elements of the Hecke algebra over $S_n$ . The conjecture asserts that, for purposes of character evaluation, any Kazhdan–Lusztig basis element is reducible
Alex Corrêa Abreu, Antonio Nigro
doaj +1 more source
Δ–Springer varieties and Hall–Littlewood polynomials
The $\Delta $ -Springer varieties are a generalization of Springer fibers introduced by Levinson, Woo and the author that have connections to the Delta Conjecture from algebraic combinatorics.
Sean T. Griffin
doaj +1 more source
Background – Inhibition of the Janus kinase (JAK) pathway is a well‐established option for canine atopic dermatitis (cAD). Objective – To evaluate the efficacy and safety of ilunocitinib, a novel JAK inhibitor for the control of pruritus and skin lesions in client‐owned dogs with cAD.
Sophie Forster+5 more
wiley +1 more source
Background – Mycobacterium cell wall fraction (MCWF) is derived from nonpathogenic Mycobacterium phlei and is used as an immunomodulatory compound in clinical practice, yet its mode‐of‐action requires further research. Objective – To evaluate the host response to MCWF in canine peripheral blood mononuclear cells (PBMCs) by using enzyme‐linked ...
Robert Ward+9 more
wiley +1 more source
Abstract Improving parental sensitivity is an important objective of interventions to support families. This study examined reliability and validity of parental sensitivity ratings using a novel package of an e‐learning tool and an interactive decision tree provided through a mobile application, called the OK! package.
Mirte L. Forrer+3 more
wiley +1 more source
A plethysm formula for $p\sb µ(\underline x)\circ h\sb \lambda(\underline x)$ [PDF]
A previous paper by the author \ref["A new plethysm formula for symmetric functions", J. Algebraic Combin., submitted] expresses the plethysm of the power sum symmetric function and the complete symmetric function, $p_µ(x)\circ h_a(x)$, as a sum of Schur
Doran, William F., IV
core
Regular Schur labeled skew shape posets and their 0-Hecke modules
Assuming Stanley’s P-partitions conjecture holds, the regular Schur labeled skew shape posets are precisely the finite posets P with underlying set $\{1, 2, \ldots , |P|\}$ such that the P-partition generating function is symmetric and the set of ...
Young-Hun Kim, So-Yeon Lee, Young-Tak Oh
doaj +1 more source
Proof of Stembridge's conjecture on stability of Kronecker coefficients
We prove a conjecture of Stembridge concerning stability of Kronecker coefficients that vastly generalizes Murnaghan's theorem. The main idea is to identify the sequences of Kronecker coefficients in question with Hilbert functions of modules over ...
Sam, Steven V, Snowden, Andrew
core +1 more source
Splines on Cayley graphs of the symmetric group
A spline is an assignment of polynomials to the vertices of a graph whose edges are labeled by ideals, where the difference of two polynomials labeling adjacent vertices must belong to the corresponding ideal. The set of splines forms a ring. We consider
Nathan R. T. Lesnevich
doaj +1 more source