Results 1 to 10 of about 594 (43)
Arithmetic convolution sums derived from eta quotients related to divisors of 6
The aim of this paper is to find arithmetic convolution sums of some restricted divisor functions. When divisors of a certain natural number satisfy a suitable condition for modulo 12, those restricted divisor functions are expressed by the coefficients ...
Ikikardes Nazli Yildiz +2 more
doaj +1 more source
Identities Arising from Binomial-Like Formulas Involving Divisors of Numbers
In this article, we derive a great number of identities involving the ω function counting distinct prime divisors of a given number n. These identities also include Pochhammer symbols, Fibonacci and Lucas numbers and many more.
Gryszka Karol
doaj +1 more source
The multinomial convolution sum of a generalized divisor function
The main theorem of this article is to evaluate and express the multinomial convolution sum of the divisor function σr♯(n;N/4,N){\sigma }_{r}^{\sharp }\left(n;\hspace{0.33em}N\hspace{-0.08em}\text{/}\hspace{-0.08em}4,N) in as a simple form as possible ...
Park Ho
doaj +1 more source
A Note about Iterated Arithmetic Functions [PDF]
Let $f\colon\mathbb{N}\rightarrow\mathbb{N}_0$ be a multiplicative arithmetic function such that for all primes $p$ and positive integers $\alpha$, $f(p^{\alpha})
Defant, Colin
core +2 more sources
Evaluation of the convolution sum involving the sum of divisors function for 22, 44 and 52
The convolution sum, ∑(l,m)∈N02αl+βm=nσ(l)σ(m), $ \begin{array}{} \sum\limits_{{(l\, ,m)\in \mathbb{N}_{0}^{2}}\atop{\alpha \,l+\beta\, m=n}} \sigma(l)\sigma(m), \end{array} $ where αβ = 22, 44, 52, is evaluated for all natural numbers n. Modular forms
Ntienjem Ebénézer
doaj +1 more source
Evaluation of the convolution sums ∑al+bm=n lσ(l) σ(m) with ab ≤ 9
The generating functions of divisor functions are quasimodular forms of weight 2 and their products belong to a space of quasimodular forms of higher weight.
Park Yoon Kyung
doaj +1 more source
Harmonic numbers, harmonic series and zeta function
This paper reviews, from different points of view, results on Bernoulli numbers and polynomials, the distribution of prime numbers in connexion with the Riemann hypothesis. We give an account on the theorem of G. Robin, as formulated by J. Lagarias.
Sebbar Ahmed
doaj +1 more source
Averages of Ramanujan sums: Note on two papers by E. Alkan
We give a simple proof and a multivariable generalization of an identity due to E. Alkan concerning a weighted average of the Ramanujan sums. We deduce identities for other weighted averages of the Ramanujan sums with weights concerning logarithms ...
Tóth, László
core +1 more source
Note on the number of divisors of reducible quadratic polynomials
In a recent paper, Lapkova uses a Tauberian theorem to derive the asymptotic formula for the divisor sum $\sum_{n \leq x} d( n (n+v))$ where $v$ is a fixed integer and $d(n)$ denotes the number of divisors of $n$.
Dudek, Adrian W. +2 more
core +1 more source
The average order of the Dirichlet series of the gcd-sum function [PDF]
Using a result of Bordellès, we derive the second term and improved error expressions for the partial sums of the Dirichlet series of the gcd-sum function, for all real values of the ...
Broughan, Kevin A.
core

