Results 21 to 30 of about 1,036 (80)
Stability of second‐order recurrences modulo pr
The concept of sequence stability generalizes the idea of uniform distribution. A sequence is p‐stable if the set of residue frequencies of the sequence reduced modulo pr is eventually constant as a function of r. The authors identify and characterize the stability of second‐order recurrences modulo odd primes.
Lawrence Somer, Walter Carlip
wiley +1 more source
On split quaternion equivalents for Quaternaccis, shortly Split Quaternaccis
In this paper, we introduce generalizations of Quaternacci sequences (Quaternaccis), called Split Quaternacci sequences, which arose on a base of split quaternion algebras.
Bajorska-Harapińska Beata +3 more
doaj +1 more source
Invariance of recurrence sequences under a galois group
Let F be a Galois field of order q, k a fixed positive integer and R = Fk×k[D] where D is an indeterminate. Let L be a field extension of F of degree k. We identify Lf with fk×1 via a fixed normal basis B of L over F. The F‐vector space Γk(F)( = Γ(L)) of all sequences over Fk×1 is a left R‐module. For any regular f(D) ∈ R, Ωk(f(D)) = {S ∈ Γk(F) : f(D)S
Hassan Al-Zaid, Surjeet Singh
wiley +1 more source
On the Partial Finite Alternating Sums of Reciprocals of Balancing and Lucas-Balancing Numbers
In this note, the finite alternating sums of reciprocals of balancing and Lucas-balancing numbers are considered and several identities involving these sums are deduced.
Dutta Utkal Keshari, Ray Prasanta Kumar
doaj +1 more source
A Note on Two Fundamental Recursive Sequences
In this note, we establish some general results for two fundamental recursive sequences that are the basis of many well-known recursive sequences, as the Fibonacci sequence, Lucas sequence, Pell sequence, Pell-Lucas sequence, etc.
Farhadian Reza, Jakimczuk Rafael
doaj +1 more source
On Quaternion-Gaussian Fibonacci Numbers and Their Properties
We study properties of Gaussian Fibonacci numbers. We start with some basic identities. Thereafter, we focus on properties of the quaternions that accept gaussian Fibonacci numbers as coefficients.
Halici Serpil, Cerda-Morales Gamaliel
doaj +1 more source
In this paper we introduce the Horadam hybrid numbers and give some their properties: Binet formula, character and generating function.
Szynal-Liana Anetta
doaj +1 more source
On the power sum problem of Lucas polynomials and its divisible property
The main purpose of this paper is to use the mathematical induction and the properties of Lucas polynomials to study the power sum problem of Lucas polynomials. In the end, we obtain an interesting divisible property.
Xiao Wang
doaj +1 more source
One-Parameter Generalization of Dual-Hyperbolic Jacobsthal Numbers
In this paper, we introduce one-parameter generalization of dual-hyperbolic Jacobsthal numbers – dual-hyperbolic r-Jacobsthal numbers. We present some properties of them, among others the Binet formula, Catalan, Cassini, and d’Ocagne identities. Moreover,
Bród Dorota +2 more
doaj +1 more source
Generalized Fibonacci Numbers and Blackwell's Renewal Theorem
We investigate a connection between generalized Fibonacci numbers and renewal theory for stochastic processes. Using Blackwell's renewal theorem we find an approximation to the generalized Fibonacci numbers.
Asmussen +9 more
core +1 more source

