Results 11 to 20 of about 623 (41)
The $q$-binomial coefficients $\qbinom{n}{m}=\prod_{i=1}^m(1-q^{n-m+i})/(1-q^i)$, for integers $0\le m\le n$, are known to be polynomials with non-negative integer coefficients.
Warnaar, S. Ole, Zudilin, Wadim
core +1 more source
On three-dimensional q-Riordan arrays
In this article, we define three-dimensional q-Riordan arrays and q-Riordan representations for these arrays. Also, we give four cases of infinite multiplication three-dimensional matrices of these arrays.
Fang Gang +4 more
doaj +1 more source
Some congruences involving binomial coefficients
Binomial coefficients and central trinomial coefficients play important roles in combinatorics. Let $p>3$ be a prime. We show that $$T_{p-1}\equiv\left(\frac p3\right)3^{p-1}\ \pmod{p^2},$$ where the central trinomial coefficient $T_n$ is the constant ...
Cao, Hui-Qin, Sun, Zhi-Wei
core +1 more source
Some vanishing sums involving binomial coefficients in the denominator [PDF]
Identities involving binomial coeffcients usually arise in situations where counting is carried out in two different ways. For instance, some identities obtained by William Horrace [1] using probability theory turn out to be special cases of the Chu ...
Purkait, S. (Soma), Sury, B.
core
Modular forms, hypergeometric functions and congruences
Using the theory of Stienstra and Beukers, we prove various elementary congruences for the numbers \sum \binom{2i_1}{i_1}^2\binom{2i_2}{i_2}^2...\binom{2i_k}{i_k}^2, where k,n \in N, and the summation is over the integers i_1, i_2, ...i_k >= 0 such that ...
Kazalicki, M.
core +2 more sources
Periodic Sequences modulo $m$ [PDF]
We give a few remarks on the periodic sequence $a_n=\binom{n}{x}~(mod~m)$ where $x,m,n\in \mathbb{N}$, which is periodic with minimal length of the period being $$\ell(m,x)={\displaystyle\prod^w_{i=1}p^{\lfloor\log_{p_i}x\rfloor+b_i}_i}=m{\displaystyle ...
Laugier, Alexandre, Saikia, Manjil
core
A new family of multivalent functions defined by certain forms of the quantum integral operator
In this work, using the concepts of qq-calculus, we first define the qq-Jung-Kim-Srivastava and qq-Bernardi integral operators for multivalent functions. Then, we use these operators to establish the generalized integral operator ℬq,p−m−λf(z){{\mathcal{ {
Khan Ajmal +5 more
doaj +1 more source
Ramanujan-type formulae for $1/\pi$: $q$-analogues
The hypergeometric formulae designed by Ramanujan more than a century ago for efficient approximation of $\pi$, Archimedes' constant, remain an attractive object of arithmetic study.
Guo, Victor J. W., Zudilin, Wadim
core +2 more sources
Proofs of some binomial identities using the method of last squares [PDF]
We give combinatorial proofs for some identities involving binomial sums that have no closed form.Comment: 8 pages, 16 ...
Shattuck, Mark, Waldhauser, Tamás
core +1 more source
On Zudilin's q-question about Schmidt's problem
We propose an elemantary approach to Zudilin's q-question about Schmidt's problem [Electron. J. Combin. 11 (2004), #R22], which has been solved in a previous paper [Acta Arith. 127 (2007), 17--31].
Guo, Victor J. W., Zeng, Jiang
core +1 more source

