Results 31 to 40 of about 893 (82)
Representations by degenerate Daehee polynomials
In this paper, we consider the problem of representing any polynomial in terms of the degenerate Daehee polynomials and more generally of the higher-order degenerate Daehee polynomials.
Kim Taekyun +3 more
doaj +1 more source
A New Generalization of Leonardo Sequences: Biperiodic Leonardo Sequence
In this study, we define a new type of number sequence called biperiodic Leonardo sequence by the recurrence relation Lena,b=aLen−1+Len−2+1 (for even n) and Lena,b=bLen−1+Len−2+1 (for odd n) with the initial conditions Le0a,b=Le1a,b=1. We obtained the characteristic function, generating function, and Binet’s formula for this sequence and propose a ...
Hasan Gökbaş, Mohammad W. Alomari
wiley +1 more source
Variants of Schroeder Dissections [PDF]
Some formulae are given for the enumeration of certain types of dissections of the convex (n+2)-gon by non-crossing diagonals. The classical Schroeder and Motzkin numbers are addressed using a cataloguing tool, the "reversive symbol".
Smiley, Leonard M.
core
Modular forms, hypergeometric functions and congruences
Using the theory of Stienstra and Beukers, we prove various elementary congruences for the numbers \sum \binom{2i_1}{i_1}^2\binom{2i_2}{i_2}^2...\binom{2i_k}{i_k}^2, where k,n \in N, and the summation is over the integers i_1, i_2, ...i_k >= 0 such that ...
Kazalicki, M.
core +2 more sources
The group inverse of circulant matrices depending on four parameters
Explicit expressions for the coefficients of the group inverse of a circulant matrix depending on four complex parameters are analytically derived. The computation of the entries of the group inverse are now reduced to the evaluation of a polynomial ...
Carmona A. +3 more
doaj +1 more source
The log-convexity of the poly-Cauchy numbers
In 2013, Komatsu introduced the poly-Cauchy numbers, which generalize Cauchy numbers. Several generalizations of poly-Cauchy numbers have been considered since then. One particular type of generalizations is that of multiparameter-poly-Cauchy numbers. In
Komatsu, Takao, Zhao, Feng-Zhen
core +1 more source
The dual of number sequences, Riordan polynomials, and Sheffer polynomials
In this paper we introduce different families of numerical and polynomial sequences by using Riordan pseudo involutions and Sheffer polynomial sequences.
He Tian-Xiao, Ramírez José L.
doaj +1 more source
Zeros distribution and interlacing property for certain polynomial sequences
In this article, we first prove that the Hankel determinant of order three of the polynomial sequence {Pn(x)=∑k≥0P(n,k)xk}n≥0{\left\{{P}_{n}\left(x)={\sum }_{k\ge 0}P\left(n,k){x}^{k}\right\}}_{n\ge 0} is weakly (Hurwitz) stable, where P(n,k)P\left(n,k ...
Guo Wan-Ming
doaj +1 more source
Differential equations associated with generalized Bell polynomials and their zeros
In this paper, we study differential equations arising from the generating functions of the generalized Bell polynomials.We give explicit identities for the generalized Bell polynomials.
Ryoo Seoung Cheon
doaj +1 more source
Let {rn}n∈ be a strictly increasing sequence of nonnegative real numbers satisfying the asymptotic formula rn ~ αβn, where α, β are real numbers with α > 0 and β > 1. In this note we prove some limits that connect this sequence to the number e.
Farhadian Reza, Jakimczuk Rafael
doaj +1 more source

