Results 41 to 50 of about 1,005 (113)
On split quaternion equivalents for Quaternaccis, shortly Split Quaternaccis
In this paper, we introduce generalizations of Quaternacci sequences (Quaternaccis), called Split Quaternacci sequences, which arose on a base of split quaternion algebras.
Bajorska-Harapińska Beata+3 more
doaj +1 more source
The $q$-binomial coefficients $\qbinom{n}{m}=\prod_{i=1}^m(1-q^{n-m+i})/(1-q^i)$, for integers $0\le m\le n$, are known to be polynomials with non-negative integer coefficients.
Warnaar, S. Ole, Zudilin, Wadim
core +1 more source
Flat primes and thin primes [PDF]
A number is called upper (lower) flat if its shift by +1 ( −1) is a power of 2 times a squarefree number. If the squarefree number is 1 or a single odd prime then the original number is called upper (lower) thin. Upper flat numbers which are primes arise
Broughan, Kevin A., Zhou, Qizhi
core +2 more sources
The Generating Function of the Catalan Numbers and Lower Triangular Integer Matrices
In the paper, by the Faà di Bruno formula, several identities for the Bell polynomials of the second kind, and an inversion theorem, the authors simplify coefficients of two families of nonlinear ordinary differential equations for the generating ...
Feng Qi (祁锋)+2 more
semanticscholar +1 more source
Variants of Schroeder Dissections [PDF]
Some formulae are given for the enumeration of certain types of dissections of the convex (n+2)-gon by non-crossing diagonals. The classical Schroeder and Motzkin numbers are addressed using a cataloguing tool, the "reversive symbol".
Smiley, Leonard M.
core
A note involving two-by-two matrices of the k-Pell and k-Pell-Lucas sequences
We use a diagonal matrix for getting the Binet’s formula for k-Pell sequence Also the n power of the generating matrix for k-Pell-Lucas sequence is established and basic properties involving the determinant allow us to obtain its Cassini’s identity ...
P. Catarino
semanticscholar +1 more source
Some identities on generalized harmonic numbers and generalized harmonic functions
The harmonic numbers and generalized harmonic numbers appear frequently in many diverse areas such as combinatorial problems, many expressions involving special functions in analytic number theory, and analysis of algorithms.
Kim Dae San, Kim Hyekyung, Kim Taekyun
doaj +1 more source
Evaluation of integrals with hypergeometric and logarithmic functions
We provide an explicit analytical representation for a number of logarithmic integrals in terms of the Lerch transcendent function and other special functions.
Sofo Anthony
doaj +1 more source
Let {rn}n∈ be a strictly increasing sequence of nonnegative real numbers satisfying the asymptotic formula rn ~ αβn, where α, β are real numbers with α > 0 and β > 1. In this note we prove some limits that connect this sequence to the number e.
Farhadian Reza, Jakimczuk Rafael
doaj +1 more source
Normal ordering associated with λ-Stirling numbers in λ-shift algebra
It is known that the Stirling numbers of the second kind are related to normal ordering in the Weyl algebra, while the unsigned Stirling numbers of the first kind are related to normal ordering in the shift algebra.
Kim Taekyun, Kim Dae San, Kim Hye Kyung
doaj +1 more source