Results 11 to 20 of about 466 (58)
On identities involving generalized harmonic, hyperharmonic and special numbers with Riordan arrays
In this paper, by means of the summation property to the Riordan array, we derive some identities involving generalized harmonic, hyperharmonic and special numbers.
Koparal Sibel, Ömür Neşe, Duran Ömer
doaj +1 more source
Generating functions for a lattice path model introduced by Deutsch
The lattice path model suggested by E. Deutsch is derived from ordinary Dyck paths, but with additional down-steps of size −3, −5, −7, . . . . For such paths, we find the generating functions of them, according to length, ending at level i, both, when ...
Prodinger Helmut
doaj +1 more source
Limit Cycle Bifurcations from Centers of Symmetric Hamiltonian Systems Perturbing by Cubic Polynomials [PDF]
In this paper, we consider some cubic near-Hamiltonian systems obtained from perturbing the symmetric cubic Hamiltonian system with two symmetric singular points by cubic polynomials.
Gao, Bin +2 more
core +1 more source
On Generalized Jacobsthal and Jacobsthal–Lucas Numbers
Jacobsthal numbers and Jacobsthal–Lucas numbers are some of the most studied special integer sequences related to the Fibonacci numbers. In this study, we introduce one parameter generalizations of Jacobsthal numbers and Jacobsthal–Lucas numbers.
Bród Dorota, Michalski Adrian
doaj +1 more source
Multiple gcd-closed sets and determinants of matrices associated with arithmetic functions
Let f be an arithmetic function and S= {x1, …, xn} be a set of n distinct positive integers. By (f(xi, xj)) (resp. (f[xi, xj])) we denote the n × n matrix having f evaluated at the greatest common divisor (xi, xj) (resp. the least common multiple [xi, xj]
Hong Siao, Hu Shuangnian, Hong Shaofang
doaj +1 more source
On Generalized Jacobsthal and Jacobsthal-Lucas polynomials
In this paper we introduce a generalized Jacobsthal and Jacobsthal-Lucas polynomials, Jh,n and jh,n, respectively, that consist on an extension of Jacobsthal's polynomials Jn(𝑥) and Jacobsthal-Lucas polynomials jn(𝑥).
Catarino Paula, Morgado Maria Luisa
doaj +1 more source
Fibonacci and Telephone Numbers in Extremal Trees
In this paper we shall show applications of the Fibonacci numbers in edge-coloured trees. In particular we determine the successive extremal graphs in the class of trees with respect to the number of (A, 2B)-edge colourings.
Bednarz Urszula, Włoch Iwona
doaj +1 more source
We prove that powers of 4‐netted matrices (the entries satisfy a four‐term recurrence δai,j = αai−1,j + βai−1,j + γai,j−1) preserve the property of nettedness: the entries of the eth power satisfy δeai,j(e)=αeai−1,j(e)+βeai−11,j−(e)+γeai,j−1(e), where the coefficients are all instances of the same sequence xe+1 = (β + δ)xe − (βδ + αγ)xe−1.
Pantelimon Stănică
wiley +1 more source
On the arrowhead-Fibonacci numbers
In this paper, we define the arrowhead-Fibonacci numbers by using the arrowhead matrix of the characteristic polynomial of the k-step Fibonacci sequence and then we give some of their properties.
Gültekin Inci, Deveci Ömür
doaj +1 more source
Two types of hypergeometric degenerate Cauchy numbers
In 1985, Howard introduced degenerate Cauchy polynomials together with degenerate Bernoulli polynomials. His degenerate Bernoulli polynomials have been studied by many authors, but his degenerate Cauchy polynomials have been forgotten.
Komatsu Takao
doaj +1 more source

