Results 1 to 10 of about 66 (66)

On average theta functions of certain quadratic forms as sums of Eisenstein series

open access: yesOpen Mathematics, 2023
Let QQ be an integral positive definite quadratic form of level NN in 2k2k variables. Further, we assume that (−1)kN{\left(-1)}^{k}N is a fundamental discriminant. We express the average theta function of QQ as an explicit sum of Eisenstein series, which
Eum Ick Sun
doaj   +1 more source

Central L‐values of elliptic curves and local polynomials

open access: yesProceedings of the London Mathematical Society, Volume 120, Issue 5, Page 742-769, May 2020., 2020
Abstract Here we study the recently introduced notion of a locally harmonic Maass form and its applications to the theory of L‐functions. In particular, we find a criterion for vanishing of certain twisted central L‐values of a family of elliptic curves, whereby vanishing occurs precisely when the values of two finite sums over canonical binary ...
Stephan Ehlen   +3 more
wiley   +1 more source

Explicit construction of mock modular forms from weakly holomorphic Hecke eigenforms

open access: yesOpen Mathematics, 2022
Extending our previous work we construct weakly holomorphic Hecke eigenforms whose period polynomials correspond to elements in a basis consisting of odd and even Hecke eigenpolynomials induced by only cusp forms.
Choi SoYoung, Kim Chang Heon
doaj   +1 more source

Shintani and Shimura lifts of cusp forms on certain arithmetic groups and their applications

open access: yesOpen Mathematics, 2017
For an odd and squarefree level N, Kohnen proved that there is a canonically defined subspace Sκ+12new(N)⊂Sκ+12(N),andSκ+12new(N)andS2knew(N)$S_{\kappa+\frac{1}{2}}^{\mathrm{n}\mathrm{e}\mathrm{w}}(N)\subset S_{\kappa+\frac{1}{2}}(N),\,\,{\text{and ...
Choi SoYoung, Kim Chang Heon
doaj   +1 more source

On the algebraicity of coefficients of half-integral weight mock modular forms

open access: yesOpen Mathematics, 2018
Extending works of Ono and Boylan to the half-integral weight case, we relate the algebraicity of Fourier coefficients of half-integral weight mock modular forms to the vanishing of Fourier coefficients of their shadows.
Choi SoYoung, Kim Chang Heon
doaj   +1 more source

THE MOONSHINE MODULE FOR CONWAY’S GROUP

open access: yesForum of Mathematics, Sigma, 2015
We exhibit an action of Conway’s group – the automorphism group of the Leech lattice – on a distinguished super vertex operator algebra, and we prove that the associated graded trace functions are normalized principal moduli, all having vanishing ...
JOHN F. R. DUNCAN, SANDER MACK-CRANE
doaj   +1 more source

STARK POINTS AND $p$-ADIC ITERATED INTEGRALS ATTACHED TO MODULAR FORMS OF WEIGHT ONE

open access: yesForum of Mathematics, Pi, 2015
Let $E$ be an elliptic curve over $\mathbb{Q}$, and let ${\it\varrho}_{\flat }$ and ${\it\varrho}_{\sharp }$ be odd two-dimensional Artin representations for which ${\it\varrho}_{\flat }\otimes {\it\varrho}_{\sharp }$ is self-dual.
HENRI DARMON, ALAN LAUDER, VICTOR ROTGER
doaj   +1 more source

Evaluation of the convolution sum involving the sum of divisors function for 22, 44 and 52

open access: yesOpen Mathematics, 2017
The convolution sum, ∑(l,m)∈N02αl+βm=nσ(l)σ(m), $ \begin{array}{} \sum\limits_{{(l\, ,m)\in \mathbb{N}_{0}^{2}}\atop{\alpha \,l+\beta\, m=n}} \sigma(l)\sigma(m), \end{array} $ where αβ = 22, 44, 52, is evaluated for all natural numbers n. Modular forms
Ntienjem Ebénézer
doaj   +1 more source

Evaluation of the convolution sums ∑al+bm=n lσ(l) σ(m) with ab ≤ 9

open access: yesOpen Mathematics, 2017
The generating functions of divisor functions are quasimodular forms of weight 2 and their products belong to a space of quasimodular forms of higher weight.
Park Yoon Kyung
doaj   +1 more source

Binomial convolution sum of divisor functions associated with Dirichlet character modulo 8

open access: yesOpen Mathematics
In this article, we compute binomial convolution sums of divisor functions associated with the Dirichlet character modulo 8, which is the remaining primitive Dirichlet character modulo powers of 2 yet to be considered.
Jin Seokho, Park Ho
doaj   +1 more source

Home - About - Disclaimer - Privacy