Results 11 to 20 of about 396 (43)
EISENSTEIN–KRONECKER SERIES VIA THE POINCARÉ BUNDLE
A classical construction of Katz gives a purely algebraic construction of Eisenstein–Kronecker series using the Gauß–Manin connection on the universal elliptic curve. This approach gives a systematic way to study algebraic and $p$-adic properties of real-
JOHANNES SPRANG
doaj +1 more source
THE WEIGHT PART OF SERRE’S CONJECTURE FOR $\text{GL}(2)$
Let $p>2$ be prime. We use purely local methods to determine the possible reductions of certain two-dimensional crystalline representations, which we call pseudo-Barsotti–Tate representations, over arbitrary finite extensions of $\mathbb{Q}_{p}$.
TOBY GEE, TONG LIU, DAVID SAVITT
doaj +1 more source
On cubic multisections of Eisenstein series [PDF]
A systematic procedure for generating cubic multisections of Eisenstein series is given. The relevant series are determined from Fourier expansions for Eisenstein series by restricting the congruence class of the summation index modulo three.
Alaniz, Andrew, Huber, Tim
core +3 more sources
PARALLEL WEIGHT 2 POINTS ON HILBERT MODULAR EIGENVARIETIES AND THE PARITY CONJECTURE
Let $F$ be a totally real field and let $p$ be an odd prime which is totally split in $F$. We define and study one-dimensional ‘partial’ eigenvarieties interpolating Hilbert modular forms over $F$ with weight varying only at a single place $v$ above $p$.
CHRISTIAN JOHANSSON, JAMES NEWTON
doaj +1 more source
We prove a simple level-raising result for regular algebraic, conjugate self-dual automorphic forms on $\mathrm{GL}_n$ .
JACK A. THORNE
doaj +1 more source
We extend the modularity lifting result of P. Kassaei (‘Modularity lifting in parallel weight one’,J. Amer. Math. Soc. 26 (1) (2013), 199–225) to allow Galois representations with some ramification at
PAYMAN L. KASSAEI +2 more
doaj +1 more source
On mod p modular representations which are defined over \F_p [PDF]
In this paper, we use techniques of Conrey, Farmer and Wallace to find spaces of modular forms $S_k(\Gamma_0(N))$ where all of the eigenspaces have Hecke eigenvalues defined over $\F_p$, and give a heuristic indicating that these are all such spaces ...
Kilford, L. J. P.
core +5 more sources
THE BERNSTEIN CENTER OF THE CATEGORY OF SMOOTH $W(k)[\text{GL}_{n}(F)]$ -MODULES
We consider the category of smooth $W(k)[\text{GL}_{n}(F)]$ -modules, where $F$
DAVID HELM
doaj +1 more source
Gauss-Manin connections for p-adic families of nearly overconvergent modular forms [PDF]
We interpolate the Gauss-Manin connection in p-adic families of nearly overconvergent modular forms. This gives a family of Maass-Shimura type differential operators from the space of nearly overconvergent modular forms of type r to the space of nearly ...
Harron, Robert, Xiao, Liang
core +2 more sources
UNRAMIFIEDNESS OF GALOIS REPRESENTATIONS ARISING FROM HILBERT MODULAR SURFACES
Let $p$ be a prime number and $F$ a totally real number ...
MATTHEW EMERTON +2 more
doaj +1 more source

