Results 1 to 10 of about 11 (11)
On depth zero L‐packets for classical groups
Abstract By computing reducibility points of parabolically induced representations, we construct, to within at most two unramified quadratic characters, the Langlands parameter of an arbitrary depth zero irreducible cuspidal representation π of a classical group (which may be not‐quasi‐split) over a non‐archimedean local field of odd residual ...
Jaime Lust, Shaun Stevens
wiley +1 more source
2‐adic slopes of Hilbert modular forms over Q(5)
Abstract We show that for arithmetic weights with a fixed finite‐order character, the slopes of Up for p=2 (which is inert) acting on overconvergent Hilbert modular forms of level U0(4) are independent of the (algebraic part of the) weight and can be obtained by a simple recipe from the classical slopes in parallel weight 3.
Christopher Birkbeck
wiley +1 more source
EISENSTEIN–KRONECKER SERIES VIA THE POINCARÉ BUNDLE
A classical construction of Katz gives a purely algebraic construction of Eisenstein–Kronecker series using the Gauß–Manin connection on the universal elliptic curve. This approach gives a systematic way to study algebraic and $p$-adic properties of real-
JOHANNES SPRANG
doaj +1 more source
PARALLEL WEIGHT 2 POINTS ON HILBERT MODULAR EIGENVARIETIES AND THE PARITY CONJECTURE
Let $F$ be a totally real field and let $p$ be an odd prime which is totally split in $F$. We define and study one-dimensional ‘partial’ eigenvarieties interpolating Hilbert modular forms over $F$ with weight varying only at a single place $v$ above $p$.
CHRISTIAN JOHANSSON, JAMES NEWTON
doaj +1 more source
THE WEIGHT PART OF SERRE’S CONJECTURE FOR $\text{GL}(2)$
Let $p>2$ be prime. We use purely local methods to determine the possible reductions of certain two-dimensional crystalline representations, which we call pseudo-Barsotti–Tate representations, over arbitrary finite extensions of $\mathbb{Q}_{p}$.
TOBY GEE, TONG LIU, DAVID SAVITT
doaj +1 more source
We prove a simple level-raising result for regular algebraic, conjugate self-dual automorphic forms on $\mathrm{GL}_n$ .
JACK A. THORNE
doaj +1 more source
We extend the modularity lifting result of P. Kassaei (‘Modularity lifting in parallel weight one’,J. Amer. Math. Soc. 26 (1) (2013), 199–225) to allow Galois representations with some ramification at
PAYMAN L. KASSAEI+2 more
doaj +1 more source
THE BERNSTEIN CENTER OF THE CATEGORY OF SMOOTH $W(k)[\text{GL}_{n}(F)]$ -MODULES
We consider the category of smooth $W(k)[\text{GL}_{n}(F)]$ -modules, where $F$
DAVID HELM
doaj +1 more source
UNRAMIFIEDNESS OF GALOIS REPRESENTATIONS ARISING FROM HILBERT MODULAR SURFACES
Let $p$ be a prime number and $F$ a totally real number ...
MATTHEW EMERTON+2 more
doaj +1 more source
Influenza virus surveillance in Argentina during the 2012 season: antigenic characterization, genetic analysis and antiviral susceptibility. [PDF]
Benedetti E+10 more
europepmc +1 more source