Results 1 to 10 of about 16 (16)

Local newforms for the general linear groups over a non-archimedean local field

open access: yesForum of Mathematics, Pi, 2022
In [14], Jacquet–Piatetskii-Shapiro–Shalika defined a family of compact open subgroups of p-adic general linear groups indexed by nonnegative integers and established the theory of local newforms for irreducible generic representations. In this paper, we
Hiraku Atobe   +2 more
doaj   +1 more source

Automorphy lifting with adequate image

open access: yesForum of Mathematics, Sigma, 2023
Let F be a CM number field. We generalise existing automorphy lifting theorems for regular residually irreducible p-adic Galois representations over F by relaxing the big image assumption on the residual representation.
Konstantin Miagkov, Jack A. Thorne
doaj   +1 more source

Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields

open access: yesForum of Mathematics, Sigma, 2023
Let K be a finite extension of the p-adic field ${\mathbb {Q}}_p$ of degree d, let ${{\mathbb {F}}\,\!{}}$ be a finite field of characteristic p and let ${\overline {{D}}}$ be an n-dimensional pseudocharacter in the sense of ...
Gebhard Böckle, Ann-Kristin Juschka
doaj   +1 more source

ON THE EXISTENCE OF ADMISSIBLE SUPERSINGULAR REPRESENTATIONS OF $p$-ADIC REDUCTIVE GROUPS

open access: yesForum of Mathematics, Sigma, 2020
Suppose that $\mathbf{G}$ is a connected reductive group over a finite extension $F/\mathbb{Q}_{p}$ and that $C$ is a field of characteristic $p$. We prove that the group $\mathbf{G}(F)$ admits an irreducible admissible supercuspidal, or equivalently ...
FLORIAN HERZIG   +2 more
doaj   +1 more source

THE BERNSTEIN CENTER OF THE CATEGORY OF SMOOTH $W(k)[\text{GL}_{n}(F)]$ -MODULES

open access: yesForum of Mathematics, Sigma, 2016
We consider the category of smooth $W(k)[\text{GL}_{n}(F)]$ -modules, where $F$
DAVID HELM
doaj   +1 more source

COMPATIBLE SYSTEMS OF GALOIS REPRESENTATIONS ASSOCIATED TO THE EXCEPTIONAL GROUP $E_{6}$

open access: yesForum of Mathematics, Sigma, 2019
We construct, over any CM field, compatible systems of $l$-adic Galois representations that appear in the cohomology of algebraic varieties and have (for all $l$) algebraic monodromy groups equal to the exceptional group of type $E_{6}$.
GEORGE BOXER   +5 more
doaj   +1 more source

DEFORMATION CONDITIONS FOR PSEUDOREPRESENTATIONS

open access: yesForum of Mathematics, Sigma, 2019
Given a property of representations satisfying a basic stability condition, Ramakrishna developed a variant of Mazur’s Galois deformation theory for representations with that property.
PRESTON WAKE, CARL WANG-ERICKSON
doaj   +1 more source

On the local $L^2$ -Bound of the Eisenstein series

open access: yesForum of Mathematics, Sigma
We study the growth of the local $L^2$ -norms of the unitary Eisenstein series for reductive groups over number fields, in terms of their parameters. We derive a poly-logarithmic bound on an average, for a large class of reductive groups.
Subhajit Jana, Amitay Kamber
doaj   +1 more source

The global Gan-Gross-Prasad conjecture for unitary groups. II. From Eisenstein series to Bessel periods

open access: yesForum of Mathematics, Pi
We state and prove an extension of the global Gan-Gross-Prasad conjecture and the Ichino-Ikeda conjecture to the case of some Eisenstein series on unitary groups $U_n\times U_{n+1}$ .
Raphaël Beuzart-Plessis   +1 more
doaj   +1 more source

Cuspidal ${\ell }$ -modular representations of $\operatorname {GL}_n({ F})$ distinguished by a Galois involution

open access: yesForum of Mathematics, Sigma
Let ${ F}/{ F}_0$ be a quadratic extension of non-Archimedean locally compact fields of residual characteristic $p\neq 2$ with Galois automorphism $\sigma $ , and let R be an algebraically closed field of characteristic $\ell ...
Robert Kurinczuk   +2 more
doaj   +1 more source

Home - About - Disclaimer - Privacy