Results 11 to 16 of about 16 (16)

Local parameters of supercuspidal representations

open access: yesForum of Mathematics, Pi
For a connected reductive group G over a nonarchimedean local field F of positive characteristic, Genestier-Lafforgue and Fargues-Scholze have attached a semisimple parameter ${\mathcal {L}}^{ss}(\pi )$ to each irreducible representation $\pi $
Wee Teck Gan   +3 more
doaj   +1 more source

Doubling constructions and tensor product L-functions: coverings of the symplectic group

open access: yesForum of Mathematics, Sigma
In this work, we develop an integral representation for the partial L-function of a pair $\pi \times \tau $ of genuine irreducible cuspidal automorphic representations, $\pi $ of the m-fold covering of Matsumoto of the symplectic group $
Eyal Kaplan
doaj   +1 more source

L-invariants for cohomological representations of PGL(2) over arbitrary number fields

open access: yesForum of Mathematics, Sigma
Let $\pi $ be a cuspidal, cohomological automorphic representation of an inner form G of $\operatorname {{PGL}}_2$ over a number field F of arbitrary signature. Further, let $\mathfrak {p}$ be a prime of F such that G is split at
Lennart Gehrmann, Maria Rosaria Pati
doaj   +1 more source

Theta functions, fourth moments of eigenforms and the sup-norm problem II

open access: yesForum of Mathematics, Pi
Let f be an $L^2$ -normalized holomorphic newform of weight k on $\Gamma _0(N) \backslash \mathbb {H}$ with N squarefree or, more generally, on any hyperbolic surface $\Gamma \backslash \mathbb {H}$ attached to an Eichler order of ...
Ilya Khayutin   +2 more
doaj   +1 more source

Eisenstein Cohomology for $\mathrm {GL}_N$ and the special values of Rankin–Selberg L-functions over a totally imaginary number field

open access: yesForum of Mathematics, Sigma
This article presents new rationality results for the ratios of critical values of Rankin–Selberg L-functions of $\mathrm {GL}(n) \times \mathrm {GL}(n')$ over a totally imaginary field $F.$ The proof is based on a cohomological ...
A. Raghuram
doaj   +1 more source

Home - About - Disclaimer - Privacy