Results 1 to 10 of about 640 (69)
Modular forms of half-integral weight on Γ0(4) with few nonvanishing coefficients modulo ℓ
Let kk be a nonnegative integer. Let KK be a number field and OK{{\mathcal{O}}}_{K} be the ring of integers of KK. Let ℓ≥5\ell \ge 5 be a prime and vv be a prime ideal of OK{{\mathcal{O}}}_{K} over ℓ\ell . Let ff be a modular form of weight k+12k+\frac{1}
Choi Dohoon, Lee Youngmin
doaj +1 more source
Heegner points in Coleman families
Abstract We construct two‐parameter analytic families of Galois cohomology classes interpolating the étale Abel–Jacobi images of generalised Heegner cycles, with both the modular form and Grössencharacter varying in p‐adic families.
Dimitar Jetchev +2 more
wiley +1 more source
Automorphy lifting with adequate image
Let F be a CM number field. We generalise existing automorphy lifting theorems for regular residually irreducible p-adic Galois representations over F by relaxing the big image assumption on the residual representation.
Konstantin Miagkov, Jack A. Thorne
doaj +1 more source
ON THE IRREDUCIBLE COMPONENTS OF SOME CRYSTALLINE DEFORMATION RINGS
We adapt a technique of Kisin to construct and study crystalline deformation rings of $G_{K}$ for a finite extension $K/\mathbb{Q}_{p}$. This is done by considering a moduli space of Breuil–Kisin modules, satisfying an additional Galois condition, over ...
ROBIN BARTLETT
doaj +1 more source
On modular forms and the inverse Galois problem [PDF]
In this article new cases of the Inverse Galois Problem are established. The main result is that for a fixed integer n, there is a positive density set of primes p such that PSL2(Fpn) occurs as the Galois group of some finite extension of the rational nu
Luis Dieulefait, G. Wiese
semanticscholar +1 more source
Let K be a finite extension of the p-adic field ${\mathbb {Q}}_p$ of degree d, let ${{\mathbb {F}}\,\!{}}$ be a finite field of characteristic p and let ${\overline {{D}}}$ be an n-dimensional pseudocharacter in the sense of ...
Gebhard Böckle, Ann-Kristin Juschka
doaj +1 more source
Twist‐minimal trace formulas and the Selberg eigenvalue conjecture
Abstract We derive a fully explicit version of the Selberg trace formula for twist‐minimal Maass forms of weight 0 and arbitrary conductor and nebentypus character, and apply it to prove two theorems. First, conditional on Artin's conjecture, we classify the even 2‐dimensional Artin representations of small conductor; in particular, we show that the ...
Andrew R. Booker +2 more
wiley +1 more source
On Some l‐Adic Representations of Gal( (Q¯/Q) Attached to Noncongruence Subgroups [PDF]
The l‐adic parabolic cohomology groups attached to noncongruence subgroups of SL2(Z) are finite‐dimensional l‐adic representations of Gal(Q¯/K) for some number field K.
A. Scholl
semanticscholar +1 more source
Compatible systems of symplectic Galois representations and the inverse Galois problem I. Images of projective representations [PDF]
This article is the first part of a series of three articles about compatible systems of symplectic Galois representations and applications to the inverse Galois problem. In this first part, we determine the smallest field over which the projectivisation
S. Arias-de-Reyna +2 more
semanticscholar +1 more source
An Application of Maeda's Conjecture to the Inverse Galois Problem [PDF]
It is shown that Maeda’s conjecture on eigenforms of level 1 implies that for every positive even d and every p in a density-one set of primes, the simple group PSL2(Fpd) occurs as the Galois group of a number field ramifying only at p. MSC (2010): 11F11
G. Wiese
semanticscholar +1 more source

