Results 11 to 20 of about 640 (69)

Base change for Elliptic Curves over Real Quadratic Fields [PDF]

open access: yes, 2014
Let E be an elliptic curve over a real quadratic field K and F/K a totally real finite Galois extension. We prove that E/F is modular.Comment: added a short proof of Proposition 2.1 and a few more small changes to improve ...
Dieulefait, Luis, Freitas, Nuno
core   +4 more sources

SERRE WEIGHTS AND BREUIL’S LATTICE CONJECTURE IN DIMENSION THREE

open access: yesForum of Mathematics, Pi, 2020
We prove in generic situations that the lattice in a tame type induced by the completed cohomology of a $U(3)$-arithmetic manifold is purely local, that is, only depends on the Galois representation at places above $p$. This is a generalization to $\text{
DANIEL LE   +3 more
doaj   +1 more source

Elliptic Curves over Totally Real Cubic Fields are Modular [PDF]

open access: yes, 2019
We prove that all elliptic curves defined over totally real cubic fields are modular. This builds on previous work of Freitas, Le Hung and Siksek, who proved modularity of elliptic curves over real quadratic fields, as well as recent breakthroughs due to
Derickx, Maarten   +2 more
core   +2 more sources

On Serre's uniformity conjecture for semistable elliptic curves over totally real fields [PDF]

open access: yes, 2015
Let $K$ be a totally real field, and let $S$ be a finite set of non-archimedean places of $K$. It follows from the work of Merel, Momose and David that there is a constant $B_{K,S}$ so that if $E$ is an elliptic curve defined over $K$, semistable outside
Anni, Samuele, Siksek, Samir
core   +4 more sources

Criteria for irreducibility of mod p representations of Frey curves [PDF]

open access: yes, 2014
Let K be a totally real Galois number field and let A be a set of elliptic curves over K. We give sufficient conditions for the existence of a finite computable set of rational primes P such that for p not in P and E in A, the representation on E[p] is ...
Freitas, Nuno, Siksek, Samir
core   +3 more sources

TORSION GALOIS REPRESENTATIONS OVER CM FIELDS AND HECKE ALGEBRAS IN THE DERIVED CATEGORY

open access: yesForum of Mathematics, Sigma, 2016
We construct algebras of endomorphisms in the derived category of the cohomology of arithmetic manifolds, which are generated by Hecke operators. We construct Galois representations with coefficients in these Hecke algebras and apply this technique to ...
JAMES NEWTON, JACK A. THORNE
doaj   +1 more source

Finiteness properties of the category of mod p representations of ${\textrm {GL}}_2 (\mathbb {Q}_{p})$

open access: yesForum of Mathematics, Sigma, 2021
We establish the Bernstein-centre type of results for the category of mod p representations of $\operatorname {\mathrm {GL}}_2 (\mathbb {Q}_p)$ . We treat all the remaining open cases, which occur when p is $2$ or $3$ .
Vytautas Paškūnas, Shen-Ning Tung
doaj   +1 more source

Adequate Subgroups II [PDF]

open access: yes, 2011
The notion of adequate subgroups was introduced by Jack Thorne. It is a weakening of the notion of big subgroup used by Wiles and Taylor in proving automorphy lifting theorems for certain Galois representations.
Guralnick, Robert
core   +2 more sources

On elliptic curves with an isogeny of degree 7 [PDF]

open access: yes, 2010
ON ELLIPTIC CURVES WITH AN ISOGENY OF DEGREE 7 arXiv:1007.4617v3 [math.NT] 16 Oct 2012 R. GREENBERG, K. RUBIN, A. SILVERBERG, AND M. STOLL Abstract. We show that if E is an elliptic curve over Q with a Q-rational isogeny of degree 7, then the image of ...
R. Greenberg   +3 more
semanticscholar   +1 more source

On a variation of the Erdős–Selfridge superelliptic curve

open access: yesBulletin of the London Mathematical Society, Volume 51, Issue 4, Page 633-638, August 2019., 2019
Abstract In a recent paper by Das, Laishram and Saradha, it was shown that if there exists a rational solution of yl=(x+1)…(x+i−1)(x+i+1)…(x+k) for i not too close to k/2 and y≠0, then logl<3k. In this paper, we extend the number of terms that can be missing in the equation and remove the condition on i.
Sam Edis
wiley   +1 more source

Home - About - Disclaimer - Privacy