Results 11 to 20 of about 590 (49)

Heegner points in Coleman families

open access: yesProceedings of the London Mathematical Society, Volume 122, Issue 1, Page 124-152, January 2021., 2021
Abstract We construct two‐parameter analytic families of Galois cohomology classes interpolating the étale Abel–Jacobi images of generalised Heegner cycles, with both the modular form and Grössencharacter varying in p‐adic families.
Dimitar Jetchev   +2 more
wiley   +1 more source

Twist‐minimal trace formulas and the Selberg eigenvalue conjecture

open access: yesJournal of the London Mathematical Society, Volume 102, Issue 3, Page 1067-1134, December 2020., 2020
Abstract We derive a fully explicit version of the Selberg trace formula for twist‐minimal Maass forms of weight 0 and arbitrary conductor and nebentypus character, and apply it to prove two theorems. First, conditional on Artin's conjecture, we classify the even 2‐dimensional Artin representations of small conductor; in particular, we show that the ...
Andrew R. Booker   +2 more
wiley   +1 more source

Base change for Elliptic Curves over Real Quadratic Fields [PDF]

open access: yes, 2014
Let E be an elliptic curve over a real quadratic field K and F/K a totally real finite Galois extension. We prove that E/F is modular.Comment: added a short proof of Proposition 2.1 and a few more small changes to improve ...
Dieulefait, Luis, Freitas, Nuno
core   +4 more sources

Elliptic Curves over Totally Real Cubic Fields are Modular [PDF]

open access: yes, 2019
We prove that all elliptic curves defined over totally real cubic fields are modular. This builds on previous work of Freitas, Le Hung and Siksek, who proved modularity of elliptic curves over real quadratic fields, as well as recent breakthroughs due to
Derickx, Maarten   +2 more
core   +2 more sources

Criteria for irreducibility of mod p representations of Frey curves [PDF]

open access: yes, 2014
Let K be a totally real Galois number field and let A be a set of elliptic curves over K. We give sufficient conditions for the existence of a finite computable set of rational primes P such that for p not in P and E in A, the representation on E[p] is ...
Freitas, Nuno, Siksek, Samir
core   +3 more sources

On Serre's uniformity conjecture for semistable elliptic curves over totally real fields [PDF]

open access: yes, 2015
Let $K$ be a totally real field, and let $S$ be a finite set of non-archimedean places of $K$. It follows from the work of Merel, Momose and David that there is a constant $B_{K,S}$ so that if $E$ is an elliptic curve defined over $K$, semistable outside
Anni, Samuele, Siksek, Samir
core   +4 more sources

On a variation of the Erdős–Selfridge superelliptic curve

open access: yesBulletin of the London Mathematical Society, Volume 51, Issue 4, Page 633-638, August 2019., 2019
Abstract In a recent paper by Das, Laishram and Saradha, it was shown that if there exists a rational solution of yl=(x+1)…(x+i−1)(x+i+1)…(x+k) for i not too close to k/2 and y≠0, then logl<3k. In this paper, we extend the number of terms that can be missing in the equation and remove the condition on i.
Sam Edis
wiley   +1 more source

Adequate Subgroups II [PDF]

open access: yes, 2011
The notion of adequate subgroups was introduced by Jack Thorne. It is a weakening of the notion of big subgroup used by Wiles and Taylor in proving automorphy lifting theorems for certain Galois representations.
Guralnick, Robert
core   +2 more sources

Torsion in the cohomology of congruence subgroups of SL(4,Z) and Galois representations [PDF]

open access: yes, 2010
We report on the computation of torsion in certain homology theories of congruence subgroups of SL(4,Z). Among these are the usual group cohomology, the Tate-Farrell cohomology, and the homology of the sharbly complex.
Ash, Avner   +2 more
core   +2 more sources

Vanishing theorems for the mod p cohomology of some simple Shimura varieties

open access: yesForum of Mathematics, Sigma, 2020
We show that the mod p cohomology of a simple Shimura variety treated in Harris-Taylor’s book vanishes outside a certain nontrivial range after localizing at any non-Eisenstein ideal of the Hecke algebra. In cases of low dimensions, we show the vanishing
Teruhisa Koshikawa
doaj   +1 more source

Home - About - Disclaimer - Privacy