Results 11 to 20 of about 283 (24)
ON THE INTEGRAL HODGE AND TATE CONJECTURES OVER A NUMBER FIELD
Hassett and Tschinkel gave counterexamples to the integral Hodge conjecture among 3-folds over a number field. We work out their method in detail, showing that essentially all known counterexamples to the integral Hodge conjecture over the complex ...
BURT TOTARO
doaj +1 more source
THE WEIGHT PART OF SERRE’S CONJECTURE FOR $\text{GL}(2)$
Let $p>2$ be prime. We use purely local methods to determine the possible reductions of certain two-dimensional crystalline representations, which we call pseudo-Barsotti–Tate representations, over arbitrary finite extensions of $\mathbb{Q}_{p}$.
TOBY GEE, TONG LIU, DAVID SAVITT
doaj +1 more source
We extend the modularity lifting result of P. Kassaei (‘Modularity lifting in parallel weight one’,J. Amer. Math. Soc. 26 (1) (2013), 199–225) to allow Galois representations with some ramification at
PAYMAN L. KASSAEI +2 more
doaj +1 more source
COMPATIBLE SYSTEMS OF GALOIS REPRESENTATIONS ASSOCIATED TO THE EXCEPTIONAL GROUP $E_{6}$
We construct, over any CM field, compatible systems of $l$-adic Galois representations that appear in the cohomology of algebraic varieties and have (for all $l$) algebraic monodromy groups equal to the exceptional group of type $E_{6}$.
GEORGE BOXER +5 more
doaj +1 more source
SERRE WEIGHTS AND WILD RAMIFICATION IN TWO-DIMENSIONAL GALOIS REPRESENTATIONS
A generalization of Serre’s Conjecture asserts that if $F$ is a totally real field, then certain characteristic
LASSINA DEMBÉLÉ +2 more
doaj +1 more source
UNRAMIFIEDNESS OF GALOIS REPRESENTATIONS ARISING FROM HILBERT MODULAR SURFACES
Let $p$ be a prime number and $F$ a totally real number ...
MATTHEW EMERTON +2 more
doaj +1 more source
COMPUTING IMAGES OF GALOIS REPRESENTATIONS ATTACHED TO ELLIPTIC CURVES
Let $E$ be an elliptic curve without complex multiplication (CM) over a number field $K$
ANDREW V. SUTHERLAND
doaj +1 more source
Dihedral Group, 4-Torsion on an Elliptic Curve, and a Peculiar Eigenform Modulo 4
We work out a non-trivial example of lifting a so-called weak eigenform to a true, characteristic 0 eigenform. The weak eigenform is closely related to Ramanujan's tau function whereas the characteristic 0 eigenform is attached to an elliptic curve ...
Kiming, Ian, Rustom, Nadim
core +1 more source
Elliptic curves with maximal Galois action on their torsion points
Given an elliptic curve E over a number field k, the Galois action on the torsion points of E induces a Galois representation, \rho_E : Gal(\bar{k}/k) \to GL_2(\hat{Z}).
Zywina, David
core +2 more sources
Abelian varieties over large algebraic fields with infinite torsion [PDF]
Let A be an abelian variety of positive dimension defined over a number field K and let Kbar be a fixed algebraic closure of K. For each element sigma of the absolute Galois group Gal(Kbar/K), let Kbar(sigma) be the fixed field of sigma in Kbar. We shall
Zywina, David
core

