Results 11 to 20 of about 283 (24)

ON THE INTEGRAL HODGE AND TATE CONJECTURES OVER A NUMBER FIELD

open access: yesForum of Mathematics, Sigma, 2013
Hassett and Tschinkel gave counterexamples to the integral Hodge conjecture among 3-folds over a number field. We work out their method in detail, showing that essentially all known counterexamples to the integral Hodge conjecture over the complex ...
BURT TOTARO
doaj   +1 more source

THE WEIGHT PART OF SERRE’S CONJECTURE FOR $\text{GL}(2)$

open access: yesForum of Mathematics, Pi, 2015
Let $p>2$ be prime. We use purely local methods to determine the possible reductions of certain two-dimensional crystalline representations, which we call pseudo-Barsotti–Tate representations, over arbitrary finite extensions of $\mathbb{Q}_{p}$.
TOBY GEE, TONG LIU, DAVID SAVITT
doaj   +1 more source

Modularity lifting results in parallel weight one and applications to the Artin conjecture: the tamely ramified case

open access: yesForum of Mathematics, Sigma, 2014
We extend the modularity lifting result of P. Kassaei (‘Modularity lifting in parallel weight one’,J. Amer. Math. Soc. 26 (1) (2013), 199–225) to allow Galois representations with some ramification at
PAYMAN L. KASSAEI   +2 more
doaj   +1 more source

COMPATIBLE SYSTEMS OF GALOIS REPRESENTATIONS ASSOCIATED TO THE EXCEPTIONAL GROUP $E_{6}$

open access: yesForum of Mathematics, Sigma, 2019
We construct, over any CM field, compatible systems of $l$-adic Galois representations that appear in the cohomology of algebraic varieties and have (for all $l$) algebraic monodromy groups equal to the exceptional group of type $E_{6}$.
GEORGE BOXER   +5 more
doaj   +1 more source

SERRE WEIGHTS AND WILD RAMIFICATION IN TWO-DIMENSIONAL GALOIS REPRESENTATIONS

open access: yesForum of Mathematics, Sigma, 2016
A generalization of Serre’s Conjecture asserts that if $F$ is a totally real field, then certain characteristic
LASSINA DEMBÉLÉ   +2 more
doaj   +1 more source

UNRAMIFIEDNESS OF GALOIS REPRESENTATIONS ARISING FROM HILBERT MODULAR SURFACES

open access: yesForum of Mathematics, Sigma, 2017
Let $p$ be a prime number and $F$ a totally real number ...
MATTHEW EMERTON   +2 more
doaj   +1 more source

COMPUTING IMAGES OF GALOIS REPRESENTATIONS ATTACHED TO ELLIPTIC CURVES

open access: yesForum of Mathematics, Sigma, 2016
Let $E$ be an elliptic curve without complex multiplication (CM) over a number field $K$
ANDREW V. SUTHERLAND
doaj   +1 more source

Dihedral Group, 4-Torsion on an Elliptic Curve, and a Peculiar Eigenform Modulo 4

open access: yes, 2018
We work out a non-trivial example of lifting a so-called weak eigenform to a true, characteristic 0 eigenform. The weak eigenform is closely related to Ramanujan's tau function whereas the characteristic 0 eigenform is attached to an elliptic curve ...
Kiming, Ian, Rustom, Nadim
core   +1 more source

Elliptic curves with maximal Galois action on their torsion points

open access: yes, 2008
Given an elliptic curve E over a number field k, the Galois action on the torsion points of E induces a Galois representation, \rho_E : Gal(\bar{k}/k) \to GL_2(\hat{Z}).
Zywina, David
core   +2 more sources

Abelian varieties over large algebraic fields with infinite torsion [PDF]

open access: yes, 2010
Let A be an abelian variety of positive dimension defined over a number field K and let Kbar be a fixed algebraic closure of K. For each element sigma of the absolute Galois group Gal(Kbar/K), let Kbar(sigma) be the fixed field of sigma in Kbar. We shall
Zywina, David
core  

Home - About - Disclaimer - Privacy