Results 11 to 20 of about 174 (27)
Abel Summation of Ramanujan-Fourier Series [PDF]
Using Abel summation the paper proves a weak form of the Wiener-Khinchin formula for arithmetic functions with point-wise convergent Ramanujan-Fourier expansions.
Washburn, John
core
The primary contribution of this paper is to research one kind special Kloosterman sums using analytic method. We translate one kind fourth power mean of the Kloosterman sums into the character sums of one kind polynomials. It is possible to construct an exact formula for the fourth power mean of one kind Kloosterman sums by computing the character ...
Shushu Ning, Xuexia Wang, Ming-Sheng Liu
wiley +1 more source
On the non-vanishing of certain Dirichlet series
Given $k\in\mathbb N$, we study the vanishing of the Dirichlet series $$D_k(s,f):=\sum_{n\geq1} d_k(n)f(n)n^{-s}$$ at the point $s=1$, where $f$ is a periodic function modulo a prime $p$.
Bettin, Sandro, Martin, Bruno
core +2 more sources
A study on two types of degenerate unipoly-Dedekind sums
In this paper, we study the degenerate unipoly-Dedekind sums rising from the type 2 degenerate unipoly Bernoulli functions and degenerate unipoly-Bernoulli functions of arbitrary indices, respectively.
Wencong Liu +3 more
doaj +1 more source
On the number of solutions of a restricted linear congruence
Consider the linear congruence equation $${a_1^{s}x_1+\ldots+a_k^{s} x_k \equiv b\,(\text{mod } n^s)}\text { where } a_i,b\in\mathbb{Z},s\in\mathbb{N}$$ Denote by $(a,b)_s$ the largest $l^s\in\mathbb{N}$ which divides $a$ and $b$ simultaneously.
Namboothiri, K Vishnu
core +1 more source
Evaluating Binomial Character Sums Modulo Powers of Two [PDF]
We show that for any mod $2^m$ characters, $\chi_1, \chi_2,$ the complete exponential sum, $$ \sum_{x=1}^{2^m}\chi_1(x) \chi_2(Ax^k+B), $$ has a simple explicit ...
Pigno, Vincent +2 more
core
From a cotangent sum to a generalized totient function
In this paper we investigate a certain category of cotangent sums and more specifically the sum $$\sum_{m=1}^{b-1}\cot\left(\frac{\pi m}{b}\right)\sin^{3}\left(2\pi m\frac{a}{b}\right)\:$$ and associate the distribution of its values to a generalized ...
Rassias, Michael Th.
core +1 more source
Moments of averages of generalized Ramanujan sums
Let $\beta$ be a positive integer. A generalization of the Ramanujan sum due to Cohen is given by \begin{align} c_{q,\beta }(n) := \sum\limits_{{{(h,{q^\beta })}_\beta } = 1} {{e^{2\pi inh/{q^\beta }}}}, \nonumber \end{align} where $h$ ranges over the ...
Robles, Nicolas, Roy, Arindam
core +1 more source
One special kind of Kloosterman sum and its fourth-power mean
This article aims to investigate the calculation problem of the fourth-power mean of the specific Kloosterman sums by utilizing analytic methods and the properties of classical Gauss sums.
Zhang Wenpeng, Wang Li, Liu Xiaoge
doaj +1 more source
Generalized quadratic Gauss sums and their 2mth power mean
The main purpose of this article is to study the problem of calculating the 2mth power mean of the generalized quadratic Gauss sums, and using the analytic method and an interesting combinatorial identity to give a sharp asymptotic formula for the 2mth ...
Cui Dewang, Zhang Wenpeng
doaj +1 more source

