Results 1 to 10 of about 263 (30)
Singular moduli of rth Roots of modular functions
When singular moduli of Hauptmodules generate ring class fields (resp. ray class fields) of imaginary quadratic fields, using the theory of Shimura reciprocity law, we determine a necessary and sufficient condition for singular moduli of rrth roots of ...
Choi SoYoung
doaj +1 more source
Class fields generated by coordinates of elliptic curves
Let KK be an imaginary quadratic field different from Q(−1){\mathbb{Q}}\left(\sqrt{-1}) and Q(−3){\mathbb{Q}}\left(\sqrt{-3}). For a nontrivial integral ideal m{\mathfrak{m}} of KK, let Km{K}_{{\mathfrak{m}}} be the ray class field modulo m{\mathfrak{m}}.
Jung Ho Yun, Koo Ja Kyung, Shin Dong Hwa
doaj +1 more source
Ramanujan’s function k(τ)=r(τ)r2(2τ) and its modularity
We study the modularity of Ramanujan’s function k(τ)=r(τ)r2(2τ)k(\tau )=r(\tau ){r}^{2}(2\tau ), where r(τ)r(\tau ) is the Rogers-Ramanujan continued fraction.
Lee Yoonjin, Park Yoon Kyung
doaj +1 more source
On some extensions of Gauss’ work and applications
Let K be an imaginary quadratic field of discriminant dK{d}_{K} with ring of integers OK{{\mathcal{O}}}_{K}, and let τK{\tau }_{K} be an element of the complex upper half plane so that OK=[τK,1]{{\mathcal{O}}}_{K}={[}{\tau }_{K},1].
Jung Ho Yun, Koo Ja Kyung, Shin Dong Hwa
doaj +1 more source
Stickelberger's congruences for absolute norms of relative discriminants [PDF]
We give an improvement of a result of J. Martinet on Stickelberger's congruences for the absolute norms of relative discriminants of number fields, by using classical arguments of class field ...
Gras, Georges
core +5 more sources
Counterexamples to a conjecture of Lemmermeyer [PDF]
We produce infinitely many finite 2-groups that do not embed with index 2 in any group generated by involutions. This disproves a conjecture of Lemmermeyer and restricts the possible Galois groups of unramified 2-extensions, Galois over the rationals, of
Boston, Nigel, Leedham-Green, Charles
core +1 more source
The Chevalley-Gras formula over global fields [PDF]
In this article we give an adelic proof of the Chevalley-Gras formula for global fields, which itself is a generalization of the ambiguous class number formula. The idea is to reduce the formula to the Hasse norm theorem, the local and global reciprocity
Li, Jianing, Yu, Chia-Fu
core +3 more sources
Representation fields for commutative orders [PDF]
A representation field for a non-maximal order $\Ha$ in a central simple algebra is a subfield of the spinor class field of maximal orders which determines the set of spinor genera of maximal orders containing a copy of $\Ha$. Not every non-maximal order
Arenas-Carmona, Luis
core +2 more sources
Modular equations of a continued fraction of order six
We study a continued fraction X(τ) of order six by using the modular function theory. We first prove the modularity of X(τ), and then we obtain the modular equation of X(τ) of level n for any positive integer n; this includes the result of Vasuki et al ...
Lee Yoonjin, Park Yoon Kyung
doaj +1 more source
After the significant work of Zagier on the traces of singular moduli, Jeon, Kang and Kim showed that the Galois traces of real-valued class invariants given in terms of the singular values of the classical Weber functions can be identified with the ...
Eum Ick Sun, Jung Ho Yun
doaj +1 more source

