Results 1 to 10 of about 1,437 (40)

Bounds for the minimum distance function

open access: yesAnalele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, 2021
Let I be a homogeneous ideal in a polynomial ring S. In this paper, we extend the study of the asymptotic behavior of the minimum distance function δI of I and give bounds for its stabilization point, rI, when I is an F -pure or a square-free monomial ...
Núñez-Betancourt Luis   +2 more
doaj   +1 more source

Les transformations des services publics français au XXe siècle : quelques repères [PDF]

open access: yes, 2007
Phénoménale extension des activités associées au service public, innovations juridiques et de gestion, introduction de nouveaux acteurs venant épauler ou contrer l’État : l’histoire des services publics au XXe siècle, dense et complexe, permet de mieux ...
Chatriot, Alain
core   +3 more sources

Europe de la Défense:Quel processus d’allocation ? [PDF]

open access: yes, 1950
Depuis 1999, l’Union européenne a décidé de disposer d’une politique de sécurité et de défense (pesd) autonome. La très forte hétérogénéité des préférences de chacun des États membres implique de définir la nature du processus d’allocation des ressources
Foucault, Martial
core   +1 more source

Pascal type properties of Betti numbers

open access: yesInternational Journal of Mathematics and Mathematical Sciences, Volume 17, Issue 3, Page 545-552, 1994., 1994
In this paper, we will describe the Pascal Type properties of Betti numbers of ideals associated to n‐gons. These are quite similar to the properties enjoyed by the Pascal′s Triangle, concerning the binomial coefficients. By definition, the Betti numbers βt(n) of an ideal I associated to an n‐gon are the ranks of the modules in a free minimal ...
Tilak de Alwis
wiley   +1 more source

Algebraic properties of the binomial edge ideal of a complete bipartite graph

open access: yesAnalele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, 2014
Let JG denote the binomial edge ideal of a connected undirected graph on n vertices. This is the ideal generated by the binomials xiyj − xjyi, 1 ≤ i < j≤ n, in the polynomial ring S = K[x1, . . . , xn, y1, . . . , yn] where {i, j} is an edge of G.
Schenzel Peter, Zafar Sohail
doaj   +1 more source

On algebraic characterization of SSC of the Jahangir’s graph 𝓙n,m

open access: yesOpen Mathematics, 2018
In this paper, some algebraic and combinatorial characterizations of the spanning simplicial complex Δs(𝓙n,m) of the Jahangir’s graph 𝓙n,m are explored. We show that Δs(𝓙n,m) is pure, present the formula for f-vectors associated to it and hence deduce a ...
Raza Zahid, Kashif Agha, Anwar Imran
doaj   +1 more source

On Characteristic Poset and Stanley Decomposition

open access: yesAnalele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, 2014
Let J ⊂ I be two monomial ideals such that I/J is Cohen Macaulay. By associating a finite posets PI/Jg$P_{I/J}^g$ to I/J, we show that if I/J is a Stanley ideal then I/J˜$\widetilde{I/J}$ is also a Stanley ideal, where I/J˜$\widetilde{I/J}$ is the ...
Ahmad Sarfraz   +2 more
doaj   +1 more source

Koszul homomorphisms and universal resolutions in local algebra

open access: yesForum of Mathematics, Sigma
We define a local homomorphism $(Q,k)\to (R,\ell )$ to be Koszul if its derived fiber $R\otimes ^{\mathsf {L}}_Q k$ is formal, and if $\operatorname {Tor}^{Q}(R,k)$ is Koszul in the classical sense.
Benjamin Briggs   +3 more
doaj   +1 more source

On the multiplicity of tangent cones of monomial curves

open access: yes, 2018
Let $\Lambda$ be a numerical semigroup, $\mathcal{C}\subseteq \mathbb{A}^n$ the monomial curve singularity associated to $\Lambda$, and $\mathcal{T}$ its tangent cone.
Sammartano, Alessio
core   +1 more source

A Homological dimension related to AB rings [PDF]

open access: yes, 2012
There are many homological dimensions which are closely related to ring theoretic properties. The notion of a AB ring has been introduced by Huneke and Jorgensen. It has nice homological properties.
Araya, Tokuji
core  

Home - About - Disclaimer - Privacy