Results 1 to 10 of about 549 (46)
On Types of Elliptic Pseudoprimes [PDF]
We generalize the notions of elliptic pseudoprimes and elliptic Carmichael numbers introduced by Silverman to analogues of Euler-Jacobi and strong pseudoprimes.
L. Babinkostova +2 more
doaj +1 more source
Isogenies on twisted Hessian curves
Elliptic curves are typically defined by Weierstrass equations. Given a kernel, the well-known Vélu's formula shows how to explicitly write down an isogeny between Weierstrass curves. However, it is not clear how to do the same on other forms of elliptic
Perez Broon Fouazou Lontouo +3 more
doaj +1 more source
Classification of Elements in Elliptic Curve Over the Ring 𝔽q[ɛ]
Let 𝔽q[ɛ] := 𝔽q [X]/(X4 − X3) be a finite quotient ring where ɛ4 = ɛ3, with 𝔽q is a finite field of order q such that q is a power of a prime number p greater than or equal to 5.
Selikh Bilel +2 more
doaj +1 more source
On the supersingular GPST attack
The main attack against static-key supersingular isogeny Diffie–Hellman (SIDH) is the Galbraith–Petit–Shani–Ti (GPST) attack, which also prevents the application of SIDH to other constructions such as non-interactive key-exchange.
Basso Andrea, Pazuki Fabien
doaj +1 more source
Equidistribution Among Cosets of Elliptic Curve Points in Intervals
In a recent paper devoted to fault analysis of elliptic curve-based signature schemes, Takahashi et al. (TCHES 2018) described several attacks, one of which assumed an equidistribution property that can be informally stated as follows: given an elliptic ...
Kim Taechan, Tibouchi Mehdi
doaj +1 more source
Protecting ECC Against Fault Attacks: The Ring Extension Method Revisited
Due to its shorter key size, elliptic curve cryptography (ECC) is gaining more and more popularity. However, if not properly implemented, the resulting cryptosystems may be susceptible to fault attacks.
Joye Marc
doaj +1 more source
Elliptic curve and k-Fibonacci-like sequence
In this paper, we will introduce a modified k-Fibonacci-like sequence defined on an elliptic curve and prove Binet’s formula for this sequence. Moreover, we give a new encryption scheme using this sequence.
Zakariae Cheddour +2 more
doaj +1 more source
The most efficient indifferentiable hashing to elliptic curves of j-invariant 1728
This article makes an important contribution to solving the long-standing problem of whether all elliptic curves can be equipped with a hash function (indifferentiable from a random oracle) whose running time amounts to one exponentiation in the basic ...
Koshelev Dmitrii
doaj +1 more source
Constructing Cycles in Isogeny Graphs of Supersingular Elliptic Curves
Loops and cycles play an important role in computing endomorphism rings of supersingular elliptic curves and related cryptosystems. For a supersingular elliptic curve E defined over 𝔽p2, if an imaginary quadratic order O can be embedded in End(E) and a ...
Xiao Guanju, Luo Lixia, Deng Yingpu
doaj +1 more source
Orienting supersingular isogeny graphs
We introduce a category of 𝓞-oriented supersingular elliptic curves and derive properties of the associated oriented and nonoriented ℓ-isogeny supersingular isogeny graphs.
Colò Leonardo, Kohel David
doaj +1 more source

