Results 1 to 10 of about 11 (11)
On genus one mirror symmetry in higher dimensions and the BCOV conjectures
The mathematical physicists Bershadsky–Cecotti–Ooguri–Vafa (BCOV) proposed, in a seminal article from 1994, a conjecture extending genus zero mirror symmetry to higher genera.
Dennis Eriksson +2 more
doaj +1 more source
The most efficient indifferentiable hashing to elliptic curves of j-invariant 1728
This article makes an important contribution to solving the long-standing problem of whether all elliptic curves can be equipped with a hash function (indifferentiable from a random oracle) whose running time amounts to one exponentiation in the basic ...
Koshelev Dmitrii
doaj +1 more source
Smoothing toroidal crossing spaces
We prove the existence of a smoothing for a toroidal crossing space under mild assumptions. By linking log structures with infinitesimal deformations, the result receives a very compact form for normal crossing spaces.
Simon Felten, Matej Filip, Helge Ruddat
doaj +1 more source
Conic bundles that are not birational to numerical Calabi--Yau pairs [PDF]
Let $X$ be a general conic bundle over the projective plane with branch curve of degree at least 19. We prove that there is no normal projective variety $Y$ that is birational to $X$ and such that some multiple of its anticanonical divisor is effective ...
János Kollár
doaj +1 more source
Tropically constructed Lagrangians in mirror quintic threefolds
We use tropical curves and toric degeneration techniques to construct closed embedded Lagrangian rational homology spheres in a lot of Calabi-Yau threefolds. The homology spheres are mirror dual to the holomorphic curves contributing to the Gromov-Witten
Cheuk Yu Mak, Helge Ruddat
doaj +1 more source
Analytic continuation of better-behaved GKZ systems and Fourier-Mukai transforms [PDF]
We study the relationship between solutions to better-behaved GKZ hypergeometric systems near different large radius limit points, and their geometric counterparts given by the $K$-groups of the associated toric Deligne-Mumford stacks. We prove that the $
Zengrui Han
doaj +1 more source
A cone conjecture for log Calabi-Yau surfaces
We consider log Calabi-Yau surfaces $(Y, D)$ with singular boundary. In each deformation type, there is a distinguished surface $(Y_e,D_e)$ such that the mixed Hodge structure on $H_2(Y \setminus D)$ is split.
Jennifer Li
doaj +1 more source
Deformations of Calabi–Yau varieties with k-liminal singularities
The goal of this paper is to describe certain nonlinear topological obstructions for the existence of first-order smoothings of mildly singular Calabi–Yau varieties of dimension at least $4$ .
Robert Friedman, Radu Laza
doaj +1 more source
Minimal log discrepancies of hypersurface mirrors
For certain quasismooth Calabi–Yau hypersurfaces in weighted projective space, the Berglund-Hübsch-Krawitz (BHK) mirror symmetry construction gives a concrete description of the mirror.
Louis Esser
doaj +1 more source
Nef cones of fiber products and an application to the cone conjecture
We prove a decomposition theorem for the nef cone of smooth fiber products over curves, subject to the necessary condition that their Néron–Severi space decomposes.
Cécile Gachet +2 more
doaj +1 more source

