Results 1 to 10 of about 15 (15)

Frobenius splitting of Schubert varieties of semi-infinite flag manifolds

open access: yesForum of Mathematics, Pi, 2021
We exhibit basic algebro-geometric results on the formal model of semi-infinite flag varieties and its Schubert varieties over an algebraically closed field ${\mathbb K}$ of characteristic $\neq 2$ from scratch.
Syu Kato
doaj   +1 more source

Inverse K-Chevalley formulas for semi-infinite flag manifolds, I: minuscule weights in ADE type

open access: yesForum of Mathematics, Sigma, 2021
We prove an explicit inverse Chevalley formula in the equivariant K-theory of semi-infinite flag manifolds of simply laced type. By an ‘inverse Chevalley formula’ we mean a formula for the product of an equivariant scalar with a Schubert class, expressed
Takafumi Kouno   +3 more
doaj   +1 more source

Infinite flags and Schubert polynomials

open access: yesForum of Mathematics, Sigma
We study Schubert polynomials using geometry of infinite-dimensional flag varieties and degeneracy loci. Applications include Graham-positivity of coefficients appearing in equivariant coproduct formulas and expansions of back-stable and enriched ...
David Anderson
doaj   +1 more source

An inverse Grassmannian Littlewood–Richardson rule and extensions

open access: yesForum of Mathematics, Sigma
Chow rings of flag varieties have bases of Schubert cycles $\sigma _u $ , indexed by permutations. A major problem of algebraic combinatorics is to give a positive combinatorial formula for the structure constants of this basis.
Oliver Pechenik, Anna Weigandt
doaj   +1 more source

A presentation of the torus-equivariant quantum K-theory ring of flag manifolds of type A, Part II: quantum double Grothendieck polynomials

open access: yesForum of Mathematics, Sigma
In our previous paper, we gave a presentation of the torus-equivariant quantum K-theory ring $QK_{H}(Fl_{n+1})$ of the (full) flag manifold $Fl_{n+1}$ of type $A_{n}$ as a quotient of a polynomial ring by an explicit ideal.
Toshiaki Maeno   +2 more
doaj   +1 more source

Borel-type presentation of the torus-equivariant quantum K-ring of flag manifolds of type C

open access: yesForum of Mathematics, Sigma
We give a presentation of the torus-equivariant (small) quantum K-ring of flag manifolds of type C as an explicit quotient of a Laurent polynomial ring; our presentation can be thought of as a quantization of the classical Borel presentation of the ...
Takafumi Kouno, Satoshi Naito
doaj   +1 more source

Vanishing of Schubert coefficients via the effective Hilbert nullstellensatz

open access: yesForum of Mathematics, Sigma
Schubert Vanishing is a problem of deciding whether Schubert coefficients are zero. Until this work it was open whether this problem is in the polynomial hierarchy ${{\mathsf {PH}}}$ .
Igor Pak, Colleen Robichaux
doaj   +1 more source

Home - About - Disclaimer - Privacy