Results 11 to 20 of about 568 (51)
On sequences not enjoying Schur’s property
Here we proved the existence of a closed vector space of sequences - any nonzero element of which does not comply with Schur’s property, that is, it is weakly convergent but not norm convergent. This allows us to find similar algebraic structures in some
Jiménez-Rodríguez Pablo
doaj +1 more source
Closed-form formula for a classical system of matrix equations
Keeping in view the latest development of anti-Hermitian matrix in mind, we construct some closed form formula for a classical system of matrix equations having anti-Hermitian nature in this paper.
Abdur Rehman +4 more
doaj +1 more source
Rank relations between a {0, 1}-matrix and its complement
Let A be a {0, 1}-matrix and r(A) denotes its rank. The complement matrix of A is defined and denoted by Ac = J − A, where J is the matrix with each entry being 1.
Ma Chao, Zhong Jin
doaj +1 more source
Generalized Chebyshev Polynomials
Let h(x) be a non constant polynomial with rational coefficients. Our aim is to introduce the h(x)-Chebyshev polynomials of the first and second kind Tn and Un. We show that they are in a ℚ-vectorial subspace En(x) of ℚ[x] of dimension n.
Abchiche Mourad, Belbachir Hacéne
doaj +1 more source
Lineability, spaceability, and additivity cardinals for Darboux-like functions [PDF]
We introduce the concept of maximal lineability cardinal number, mL(M), of a subset M of a topological vector space and study its relation to the cardinal numbers known as: additivity A(M), homogeneous lineability HL(M), and lineability L(M) of M.
Aron +32 more
core +2 more sources
A completely entangled subspace of maximal dimension
A completely entangled subspace of a tensor product of Hilbert spaces is a subspace with no non-trivial product vector. K. R. Parthasarathy determined the maximum dimension possible for such a subspace.
Bhat, B. V. Rajarama
core +1 more source
A note on the minimum skew rank of a graph [PDF]
The minimum skew rank $mr^{-}(\mathbb{F},G)$ of a graph $G$ over a field $\mathbb{F}$ is the smallest possible rank among all skew symmetric matrices over $\mathbb{F}$, whose ($i$,$j$)-entry (for $i\neq j$) is nonzero whenever $ij$ is an edge in $G$ and ...
Bo Zhoub, R Esearch Article, Yanna Wanga
core +1 more source
Matrix rank and inertia formulas in the analysis of general linear models
Matrix mathematics provides a powerful tool set for addressing statistical problems, in particular, the theory of matrix ranks and inertias has been developed as effective methodology of simplifying various complicated matrix expressions, and ...
Tian Yongge
doaj +1 more source
Topological entropy for locally linearly compact vector spaces and field extensions
Let 𝕂 be a discrete field and (V, ϕ) a pair consisting of a locally linearly compact 𝕂-space V and a continuous endomorphism ϕ: V → V. We provide the formulae to compute the topological entropy ent* of the flow (V, ϕ) subject to either extension or ...
Castellano Ilaria
doaj +1 more source
From primitive spaces of bounded rank matrices to a generalized Gerstenhaber theorem
A recent generalization of Gerstenhaber's theorem on spaces of nilpotent matrices is derived, under mild conditions on the cardinality of the underlying field, from Atkinson's structure theorem on primitive spaces of bounded rank matrices.Comment: 10 ...
Pazzis, Clément de Seguins
core +2 more sources

