Results 31 to 40 of about 672 (66)
∗‐π‐Reversible ∗‐Semirings and Their Applications to Generalized Inverses
We introduce and study a new class of ∗‐semirings which is called ∗‐π‐reversible ∗‐semirings. A ∗‐semiring R is said to be ∗‐π‐reversible if for any a, b ∈ R, ab = 0 implies there exist two positive integers m and n such that bman∗=0. Some characterizations and examples of this class of semirings are given. As applications, generalized inverses related
Yuanfan Zhuo, Qinqin Gu, Huadong Su
wiley +1 more source
Inverses and eigenvalues of diamondalternating sign matrices
An n × n diamond alternating sign matrix (ASM) is a (0, +1, −1)-matrix with ±1 entries alternatingand arranged in a diamond-shaped pattern. The explicit inverse (for n even) or generalized inverse (for nodd) of a diamond ASM is derived.
Catral Minerva +3 more
doaj +1 more source
A center of a polytope: An expository review and a parallel implementation
International Journal of Mathematics and Mathematical Sciences, Volume 16, Issue 2, Page 209-224, 1993.
S. K. Sen, Hongwei Du, D. W. Fausett
wiley +1 more source
A note on the formulas for the Drazin inverse of the sum of two matrices
In this paper we derive the formula of (P + Q)D under the conditions Q(P + Q)P(P + Q) = 0, P(P + Q)P(P + Q) = 0 and QPQ2 = 0. Then, a corollary is given which satisfies the conditions (P + Q)P(P + Q) = 0 and QPQ2 = 0. Meanwhile, we show that the additive
Liu Xin, Yang Xiaoying, Wang Yaqiang
doaj +1 more source
M-matrix and inverse M-matrix extensions
A class of matrices that simultaneously generalizes the M-matrices and the inverse M-matrices is brought forward and its properties are reviewed. It is interesting to see how this class bridges the properties of the matrices it generalizes and provides a
McDonald J.J. +6 more
doaj +1 more source
Given a square matrix AA, we are able to construct numerous equalities involving reasonable mixed operations of AA and its conjugate transpose A∗{A}^{\ast }, Moore-Penrose inverse A†{A}^{\dagger } and group inverse A#{A}^{\#}. Such kind of equalities can
Tian Yongge
doaj +1 more source
An algebraic model for the propagation of errors in matrix calculus
We assume that every element of a matrix has a small, individual error, and model it by an external number, which is the sum of a nonstandard real number and a neutrix, the latter being a convex (external) additive group.
Van Tran Nam, van den Berg Imme
doaj +1 more source
Invariance property of a five matrix product involving two generalized inverses
Matrix expressions composed by generalized inverses can generally be written as f(A−1, A−2, . . ., A−k), where A1, A2, . . ., Ak are a family of given matrices of appropriate sizes, and (·)− denotes a generalized inverse of matrix.
Jiang Bo, Tian Yongge
doaj +1 more source
What is a proper graph Laplacian? An operator-theoretic framework for graph diffusion
We introduce an operator-theoretic definition of a proper graph Laplacian as any matrix associated with a given graph that can be expressed as the composition of a divergence and a gradient operator, with the gradient acting between graph-related spaces ...
Estrada Ernesto
doaj +1 more source
Trace inequalities for positive semidefinite matrices
Certain trace inequalities for positive definite matrices are generalized for positive semidefinite matrices using the notion of the group generalized inverse.
Choudhury Projesh Nath, Sivakumar K.C.
doaj +1 more source

