Results 31 to 40 of about 2,374 (146)
Bounds for the spectral radius of nonnegative matrices and generalized Fibonacci matrices
In this article, we determine upper and lower bounds for the spectral radius of nonnegative matrices. Introducing the notion of average 4-row sum of a nonnegative matrix, we extend various existing formulas for spectral radius bounds.
Adam Maria, Aretaki Aikaterini
doaj +1 more source
Perturbed spectra of defective matrices
This paper is devoted to the perturbation theory for defective matrices. We consider the asymptotic expansions of the perturbed spectrum when a matrix A is changed to A + tE, where E ≠ 0 and t > 0 is a small parameter. In particular, we analyse the rational exponents that may occur when the matrix E varies over the sphere ‖E‖ = ρ > 0.
Mihail Konstantinov+2 more
wiley +1 more source
On real or integral skew Laplacian spectrum of digraphs
For a simple connected graph G with n vertices and m edges, let −→ G be a digraph obtained by giving an arbitrary direction to the edges of G . In this paper, we consider the skew Laplacian matrix of a digraph −→ G and we obtain the skew Laplacian ...
S. Pirzada+2 more
semanticscholar +1 more source
A convergence analysis of SOR iterative methods for linear systems with weak H-matrices
It is well known that SOR iterative methods are convergent for linear systems, whose coefficient matrices are strictly or irreducibly diagonally dominant matrices and strong H-matrices (whose comparison matrices are nonsingular M-matrices).
Zhang Cheng-yi+2 more
doaj +1 more source
A comprehensive treatment of Rayleigh‐Schrödinger perturbation theory for the symmetric matrix eigenvalue problem is furnished with emphasis on the degenerate problem. The treatment is simply based upon the Moore‐Penrose pseudoinverse thus distinguishing it from alternative approaches in the literature.
Brian J. McCartin
wiley +1 more source
A lower bound for the smallest singular value
In this paper, we obtain a lower bound for the smallest singular value of nonsingular matrices which is better than the bound presented by Yu and Gu [Linear Algebra Appl. 252(1997)25-38].
L. Zou
semanticscholar +1 more source
An inequality for matrices that interpolates between the Cauchy-Schwarz and the arithmetic-geometric mean inequalities for unitarily invariant norms has been obtained by Audenaert. Alakhrass obtained a related result to Audenaert’s inequality using a log-
M. Al-khlyleh, Fadi Alrimawi
semanticscholar +1 more source
Bound for the largest singular value of nonnegative rectangular tensors
In this paper, we give a new bound for the largest singular value of nonnegative rectangular tensors when m = n, which is tighter than the bound provided by Yang and Yang in “Singular values of nonnegative rectangular tensors”, Front. Math.
He Jun+4 more
doaj +1 more source
The nonexistence of rank 4 IP tensors in signature (1, 3)
Let V be a real vector space of dimension 4 with a nondegenerate symmetric bilinear form of signature (1, 3). We show that there exists no algebraic curvature tensor R on V so that its associated skew‐symmetric operator R(⋅) has rank 4 and constant eigenvalues on the Grassmannian of nondegenerate 2‐planes in V.
Kelly Jeanne Pearson, Tan Zhang
wiley +1 more source
Two new eigenvalue localization sets for tensors and theirs applications
A new eigenvalue localization set for tensors is given and proved to be tighter than those presented by Qi (J. Symbolic Comput., 2005, 40, 1302-1324) and Li et al. (Numer. Linear Algebra Appl., 2014, 21, 39-50).
Zhao Jianxing, Sang Caili
doaj +1 more source