Results 51 to 60 of about 816 (94)
Positivity of Partitioned Hermitian Matrices with Unitarily Invariant Norms
We give a short proof of a recent result of Drury on the positivity of a $3\times 3$ matrix of the form $(\|R_i^*R_j\|_{\rm tr})_{1 \le i, j \le 3}$ for any rectangular complex (or real) matrices $R_1, R_2, R_3$ so that the multiplication $R_i^*R_j$ is ...
Li, Chi-Kwong, Zhang, Fuzhen
core +1 more source
Operator inequalities of Jensen type
We present some generalized Jensen type operator inequalities involving sequences of self-adjoint operators.
Moslehian M. S., Mićić J., Kian M.
doaj +1 more source
Pre-images of Boundary Points of the Numerical Range
This paper considers matrices A ∈ Mn(C) whose numerical range contains boundary points generated by multiple linearly independent vectors. Sharp bounds for the maximum number of such boundary points (excluding flat portions) are given for unitarily ...
Timothy Leake, Brian Lins, I. Spitkovsky
semanticscholar +1 more source
Topological properties of the block numerical range of operator matrices
We show that the block numerical range of an n×n -operator matrix A corresponding to an operator A on the Banach space X with respect to a decomposition X = ∏Xj has at most n connected components.
Agnes Radl, M. Wolff
semanticscholar +1 more source
THE GROTHENDIECK CONSTANT IS STRICTLY SMALLER THAN KRIVINE’S BOUND
The (real) Grothendieck constant ${K}_{G} $ is the infimum over those $K\in (0, \infty )$ such that for every $m, n\in \mathbb{N} $ and every $m\times n$ real matrix $({a}_{ij} )$ we have $$\begin{eqnarray*}\displaystyle \max _{\{ x_{i}\} _{i= 1}^{m} , \{
MARK BRAVERMAN +3 more
doaj +1 more source
Further refinements of the Cauchy-Schwarz inequality for matrices [PDF]
Let $A, B$ and $X$ be $n\times n$ matrices such that $A, B$ are positive semidefinite. We present some refinements of the matrix Cauchy-Schwarz inequality by using some integration techniques and various refinements of the Hermite--Hadamard inequality ...
Bakherad, Mojtaba
core
Results on matrix canonical forms are used to give a complete description of the higher rank numerical range of matrices arising from the study of quantum error correction.
Li, Chi-Kwong, Sze, Nung-Sing
core +1 more source
Some inequalities for unitarily invariant norms of matrices
This article aims to discuss inequalities involving unitarily invariant norms. We obtain a refinement of the inequality shown by Zhan. Meanwhile, we give an improvement of the inequality presented by Bhatia and Kittaneh for the Hilbert-Schmidt norm ...
Wang Shaoheng, Zou Limin, Jiang Youyi
doaj
The perturbation of Drazin inverse and dual Drazin inverse
In this study, we derive the Drazin inverse (A+εB)D{\left(A+\varepsilon B)}^{D} of the complex matrix A+εBA+\varepsilon B with Ind(A+εB)>1{\rm{Ind}}\left(A+\varepsilon B)\gt 1 and Ind(A)=k{\rm{Ind}}\left(A)=k and the group inverse (A+εB)#{\left(A ...
Wang Hongxing, Cui Chong, Wei Yimin
doaj +1 more source
Concrete minimal 3 × 3 Hermitian matrices and some general cases
Given a Hermitian matrix M ∈ M3(ℂ) we describe explicitly the real diagonal matrices DM such that ║M + DM║ ≤ ║M + D║ for all real diagonal matrices D ∈ M3(ℂ), where ║ · ║ denotes the operator norm.
Klobouk Abel H., Varela Alejandro
doaj +1 more source

