Results 11 to 20 of about 124 (48)
A Note on Multiplicative (Generalized) (α, β)-Derivations in Prime Rings [PDF]
Let R be a prime ring with center Z(R). A map G : R →R is called a multiplicative (generalized) (α, β)-derivation if G(xy)= G(x)α(y)+β(x)g(y) is fulfilled for all x; y ∈ R, where g : R → R is any map (not necessarily derivation) and α; β : R → R are ...
Rehman Nadeem ur +2 more
doaj +3 more sources
On multiplicative centrally-extended maps on semi-prime rings
In this paper, we show that for semi-prime rings of two-torsion free and 6-centrally torsion free, given a multiplicative centrally-extended derivation δ and a multiplicative centrally-extended epimorphism ϕ we can find a central ideal K and maps ...
M. S. Tammam EL-Sayiad, A. Ageeb
doaj +1 more source
A Result on Prime Rings with Generalized Derivations
In this paper we investigate the following result. Let R be a prime ring, Q its symmetric Martindale quotient ring, C its extended centroid, I a nonzero ideal of R.
Shujat Faiza, Khan Shahoor
doaj +1 more source
Jordan triple (α,β)-higher ∗-derivations on semiprime rings
In this article, we define the following: Let N0{{\mathbb{N}}}_{0} be the set of all nonnegative integers and D=(di)i∈N0D={\left({d}_{i})}_{i\in {{\mathbb{N}}}_{0}} a family of additive mappings of a ∗\ast -ring RR such that d0=idR{d}_{0}=i{d}_{R}. DD is
Ezzat O. H.
doaj +1 more source
A note on extension of semi-commutative module [PDF]
Let be endomorphism of an associative ring and be right module of ring . In the present study, we investigated a relation between power series extensions of an Armendariz module and extended the results of ...
Prachi Juyal
core +2 more sources
Commutativity with Derivations of Semiprime Rings
Let R be a 2-torsion free semiprime ring with the centre Z(R), U be a non-zero ideal and d: R → R be a derivation mapping.
Atteya Mehsin Jabel
doaj +1 more source
Generalized Derivations with Commutativity and Anti-commutativity Conditions [PDF]
Let R be a prime ring with 1, with char(R) ≠ 2; and let F : R → R be a generalized derivation. We determine when one of the following holds for all x,y ∈ R: (i) [F(x); F(y)] = 0; (ii) F(x)ΟF(y) = 0; (iii) F(x) Ο F(y) = x Ο
Bell, Howard E., Rehman, Nadeem-ur
core +1 more source
Lie nilpotency indices of symmetric elements under oriented involutions in group algebras [PDF]
Let $G$ be a group and let $F$ be a field of characteristic different from 2. Denote by $(FG)^+$ the set of symmetric elements and by $\mathcal{U}^+(FG)$ the set of symmetric units, under an oriented classical involution of the group algebra $FG$.
Castillo, John H.
core +3 more sources
Commutativity of Prime Rings with Symmetric Biderivations
The present paper shows some results on the commutativity of R: Let R be a prime ring and for any nonzero ideal I of R, if R admits a biderivation B such that it satisfies any one of the following properties (i) B([x, y], z) = [x, y], (ii) B([x, y], m) +
Reddy B. Ramoorthy, Reddy C. Jaya Subba
doaj +1 more source
Some Results on (σ,τ)-Lie Ideals [PDF]
In this note we give some basic results on one sided(σ,τ)-Lie ideals of prime rings with characteristic not 2.
Güven, Evrim +2 more
core +1 more source

