Results 11 to 20 of about 299 (69)
Generalized Derivations With Left Annihilator Conditions in Prime and Semiprime Rings
Let R be a prime ring with its Utumi ring of quotients U, C = Z(U) be the extended centroid of R, H and G two generalized derivations of R, L a noncentral Lie ideal of R, I a nonzero ideal of R.
Dhara Basudeb
doaj +1 more source
Hyers-Ulam-Rassias stability of (m, n)-Jordan derivations
In this paper, we study the Hyers-Ulam-Rassias stability of (m,n)(m,n)-Jordan derivations. As applications, we characterize (m,n)(m,n)-Jordan derivations on C⁎{C}^{\ast }-algebras and some non-self-adjoint operator algebras.
An Guangyu, Yao Ying
doaj +1 more source
Left Annihilator of Identities with Generalized Derivations in Prime and Semiprime Rings
Let R be a noncommutative prime ring of char (R) ≠ 2, F a generalized derivation of R associated to the derivation d of R and I a nonzero ideal of R. Let S ⊆ R.
Rahaman Md Hamidur
doaj +1 more source
We prove thatany rigid left Noetherian ring is either a domain or isomorphic to some ring ℤpn of integers modulo a prime power pn.
O. D. Artemovych
wiley +1 more source
Generalized Lie n-derivations on arbitrary triangular algebras
In this study, we consider generalized Lie nn-derivations of an arbitrary triangular algebra TT through the constructed triangular algebra T0{T}_{0}, where T0{T}_{0} is constructed using the notion of maximal left (right) ring of quotients.
Yuan He, Liu Zhuo
doaj +1 more source
In a recent paper we have extended the classical Herstein′s theorem on Jordan derivations on prime rings to Jordan superderivations on prime associative superalgebras. In the present paper we extend this result to semiprime associative superalgebras.
Maja Fošner
wiley +1 more source
On Jordan ideals and left (θ, θ)‐derivations in prime rings
Let R be a ring and S a nonempty subset of R. Suppose that θ and ϕ are endomorphisms of R. An additive mapping δ : R → R is called a left (θ, ϕ)‐derivation (resp., Jordan left (θ, ϕ)‐derivation) on S if δ(xy) = θ(x)δ(y) + ϕ(y)δ(x) (resp., δ(x2) = θ(x)δ(x) + ϕ(x)δ(x)) holds for all x, y ∈ S.
S. M. A. Zaidi+2 more
wiley +1 more source
Boundedness control sets for linear systems on Lie groups
Let Σ be a linear system on a connected Lie group G and assume that the reachable set 𝓐 from the identity element e ∈ G is open. In this paper, we give an algebraic condition to warrant the boundedness of the existent control set with a nonempty interior
Ayala Víctor, Todco María Torreblanca
doaj +1 more source
On derivations and commutativity in prime rings
Let R be a prime ring of characteristic different from 2, d a nonzero derivation of R, and I a nonzero right ideal of R such that [[d(x), x], [d(y), y]] = 0, for all x, y ∈ I. We prove that if [I, I]I ≠ 0, then d(I)I = 0.
Vincenzo De Filippis
wiley +1 more source
Lie triple derivations of dihedron algebra
Let K be a 2-torsion free unital ring and D(K) be dihedron algebra over K. In the present article, we prove that every Lie triple derivation of D(K) can be written as the sum of the Lie triple derivation of K, Jordan triple derivation of K, and some ...
Minahal Arshad, Muhammad Mobeen Munir
doaj +1 more source