Results 21 to 30 of about 43 (43)
Derivations of higher order in semiprime rings
Let R be a 2‐torsion free semiprime ring with derivation d. Supposed d2n is a derivation of R, where n is a positive integer. It is shown that if R is (4n − 2)‐torsion free or if R is an inner derivation of R, then d2n−1 = 0.
Jiang Luh, Youpei Ye
wiley +1 more source
Jordan {g,h}-derivations on triangular algebras
In this article, we give a sufficient and necessary condition for every Jordan {g,h}-derivation to be a {g,h}-derivation on triangular algebras. As an application, we prove that every Jordan {g,h}-derivation on τ(N)\tau ({\mathscr{N}}) is a {g,h ...
Kong Liang, Zhang Jianhua
doaj +1 more source
Commutativity results for semiprime rings with derivations
We extend a result of Herstein concerning a derivation d on a prime ring R satisfying [d(x), d(y)] = 0 for all x, y ∈ R, to the case of semiprime rings. An extension of this result is proved for a two‐sided ideal but is shown to be not true for a one‐sided ideal.
Mohammad Nagy Daif
wiley +1 more source
Commutativity of Prime Rings with Symmetric Biderivations
The present paper shows some results on the commutativity of R: Let R be a prime ring and for any nonzero ideal I of R, if R admits a biderivation B such that it satisfies any one of the following properties (i) B([x, y], z) = [x, y], (ii) B([x, y], m) +
Reddy B. Ramoorthy, Reddy C. Jaya Subba
doaj +1 more source
Jordan triple (α,β)-higher ∗-derivations on semiprime rings
In this article, we define the following: Let N0{{\mathbb{N}}}_{0} be the set of all nonnegative integers and D=(di)i∈N0D={\left({d}_{i})}_{i\in {{\mathbb{N}}}_{0}} a family of additive mappings of a ∗\ast -ring RR such that d0=idR{d}_{0}=i{d}_{R}. DD is
Ezzat O. H.
doaj +1 more source
Let R be a ring A bi‐additive symmetric mapping d : R × R → R is called a symmetric bi‐derivation if, for any fixed y ∈ R, the mapping x → D(x, y) is a derivation. The purpose of this paper is to prove the following conjecture of Vukman. Let R be a noncommutative prime ring with suitable characteristic restrictions, and let D : R × R → R and f : x → D ...
Qing Deng
wiley +1 more source
A note on semiprime rings with derivation
Let R be a 2‐torsion free semiprime ring, I a nonzero ideal of R, Z the center of R and D : R → R a derivation. If d[x, y] + [x, y] ∈ Z or d[x, y] − [x, y] ∈ Z for all x, y ∈ I, then R is commutative.
Motoshi Hongan
wiley +1 more source
In calculus, an indefinite integral of a function f is a differentiable function F whose derivative is equal to f. The main goal of the paper is to generalize this notion of the indefinite integral from the ring of real functions to any ring.
Banič Iztok
doaj +1 more source
σ-derivations on generalized matrix algebras
Let be a commutative ring with unity, 𝒜, be -algebras, be (𝒜, )-bimodule and 𝒩 be (, 𝒜)-bimodule. The -algebra 𝒢 = 𝒢(𝒜, , 𝒩, ) is a generalized matrix algebra defined by the Morita context (𝒜, , , 𝒩, ξ𝒩, Ω𝒩).
Jabeen Aisha+2 more
doaj +1 more source
A Study of Generalized Differential Identities via Prime Ideals
Let R be a ring and P be a prime ideal of R. The aim of this research paper is to delve into the relationship between the structural properties of the quotient ring R/P and the behavior of generalized derivations in a ring R endowed with an involution.
Ali Yahya Hummdi+4 more
wiley +1 more source