Results 21 to 30 of about 377 (58)

Generalized derivations of Lie triple systems

open access: yesOpen Mathematics, 2016
In this paper, we present some basic properties concerning the derivation algebra Der (T), the quasiderivation algebra QDer (T) and the generalized derivation algebra GDer (T) of a Lie triple system T, with the relationship Der (T) ⊆ QDer (T) ⊆ GDer (T) ⊆
Zhou Jia, Chen Liangyun, Ma Yao
doaj   +1 more source

Jordan {g,h}-derivations on triangular algebras

open access: yesOpen Mathematics, 2020
In this article, we give a sufficient and necessary condition for every Jordan {g,h}-derivation to be a {g,h}-derivation on triangular algebras. As an application, we prove that every Jordan {g,h}-derivation on τ(N)\tau ({\mathscr{N}}) is a {g,h ...
Kong Liang, Zhang Jianhua
doaj   +1 more source

On derivations and commutativity in prime rings

open access: yesInternational Journal of Mathematics and Mathematical Sciences, Volume 2004, Issue 70, Page 3859-3865, 2004., 2004
Let R be a prime ring of characteristic different from 2, d a nonzero derivation of R, and I a nonzero right ideal of R such that [[d(x), x], [d(y), y]] = 0, for all x, y ∈ I. We prove that if [I, I]I ≠ 0, then d(I)I = 0.
Vincenzo De Filippis
wiley   +1 more source

Jordan triple (α,β)-higher ∗-derivations on semiprime rings

open access: yesDemonstratio Mathematica, 2023
In this article, we define the following: Let N0{{\mathbb{N}}}_{0} be the set of all nonnegative integers and D=(di)i∈N0D={\left({d}_{i})}_{i\in {{\mathbb{N}}}_{0}} a family of additive mappings of a ∗\ast -ring RR such that d0=idR{d}_{0}=i{d}_{R}. DD is
Ezzat O. H.
doaj   +1 more source

Derivations of higher order in semiprime rings

open access: yesInternational Journal of Mathematics and Mathematical Sciences, Volume 21, Issue 1, Page 89-92, 1998., 1997
Let R be a 2‐torsion free semiprime ring with derivation d. Supposed d2n is a derivation of R, where n is a positive integer. It is shown that if R is (4n − 2)‐torsion free or if R is an inner derivation of R, then d2n−1 = 0.
Jiang Luh, Youpei Ye
wiley   +1 more source

Integrations on rings

open access: yesOpen Mathematics, 2017
In calculus, an indefinite integral of a function f is a differentiable function F whose derivative is equal to f. The main goal of the paper is to generalize this notion of the indefinite integral from the ring of real functions to any ring.
Banič Iztok
doaj   +1 more source

Commutativity results for semiprime rings with derivations

open access: yesInternational Journal of Mathematics and Mathematical Sciences, Volume 21, Issue 3, Page 471-474, 1998., 1996
We extend a result of Herstein concerning a derivation d on a prime ring R satisfying [d(x), d(y)] = 0 for all x, y ∈ R, to the case of semiprime rings. An extension of this result is proved for a two‐sided ideal but is shown to be not true for a one‐sided ideal.
Mohammad Nagy Daif
wiley   +1 more source

Selected non-holonomic functions in lattice statistical mechanics and enumerative combinatorics

open access: yes, 2015
We recall that the full susceptibility series of the Ising model, modulo powers of the prime 2, reduce to algebraic functions. We also recall the non-linear polynomial differential equation obtained by Tutte for the generating function of the q-coloured ...
Boukraa, S., Maillard, J-M.
core   +2 more sources

On a conjecture of Vukman

open access: yesInternational Journal of Mathematics and Mathematical Sciences, Volume 20, Issue 2, Page 263-266, 1997., 1995
Let R be a ring A bi‐additive symmetric mapping d : R × R → R is called a symmetric bi‐derivation if, for any fixed y ∈ R, the mapping x → D(x, y) is a derivation. The purpose of this paper is to prove the following conjecture of Vukman. Let R be a noncommutative prime ring with suitable characteristic restrictions, and let D : R × R → R and f : x → D ...
Qing Deng
wiley   +1 more source

σ-derivations on generalized matrix algebras

open access: yesAnalele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, 2020
Let 𝒭 be a commutative ring with unity, 𝒜, 𝒝 be 𝒭-algebras, 𝒨 be (𝒜, 𝒝)-bimodule and 𝒩 be (𝒝, 𝒜)-bimodule. The 𝒭-algebra 𝒢 = 𝒢(𝒜, 𝒨, 𝒩, 𝒝) is a generalized matrix algebra defined by the Morita context (𝒜, 𝒝, 𝒨, 𝒩, ξ𝒨𝒩, Ω𝒩𝒨).
Jabeen Aisha   +2 more
doaj   +1 more source

Home - About - Disclaimer - Privacy