Results 31 to 40 of about 43 (43)

Nonlinear generalized Jordan (σ, Γ)-derivations on triangular algebras

open access: yesSpecial Matrices, 2018
Let R be a commutative ring with identity element, A and B be unital algebras over R and let M be (A,B)-bimodule which is faithful as a left A-module and also faithful as a right B-module.
Alkenani Ahmad N.   +2 more
doaj   +1 more source

On Additivity and Multiplicativity of Centrally Extended (α, β)‐Higher Derivations in Rings

open access: yesInternational Journal of Mathematics and Mathematical Sciences, Volume 2024, Issue 1, 2024.
In this paper, the concept of centrally extended (α, β)‐higher derivations is studied. It is shown to be additive in a ring without nonzero central ideals. Also, we prove that in semiprime rings with no nonzero central ideals, every centrally extended (α, β)‐higher derivation is an (α, β)‐higher derivation.
O. H. Ezzat, Attila Gil nyi
wiley   +1 more source

Jordan left derivations in infinite matrix rings

open access: yesDemonstratio Mathematica
Let RR be a unital associative ring. Our motivation is to prove that left derivations in column finite matrix rings over RR are equal to zero and demonstrate that a left derivation d:T→Td:{\mathcal{T}}\to {\mathcal{T}} in the infinite upper triangular ...
Zhang Daochang   +3 more
doaj   +1 more source

On Jordan mappings of inverse semirings

open access: yesOpen Mathematics, 2017
In this paper, the notions of Jordan homomorphism and Jordan derivation of inverse semirings are introduced. A few results of Herstein and Brešar on Jordan homomorphisms and Jordan derivations of rings are generalized in the setting of inverse semirings.
Shafiq Sara, Aslam Muhammad
doaj   +1 more source

On Jordan triple (σ,τ)-higher derivation of triangular algebra

open access: yesSpecial Matrices, 2018
Let R be a commutative ring with unity, A = Tri(A,M,B) be a triangular algebra consisting of unital algebras A,B and (A,B)-bimodule M which is faithful as a left A-module and also as a right B-module.
Ashraf Mohammad   +2 more
doaj   +1 more source

On Generalized Derivations and Commutativity of Associative Rings

open access: yesDiscussiones Mathematicae - General Algebra and Applications, 2020
Let 𝒭 be a ring with center Z(𝒭). A mapping f : 𝒭 → 𝒭 is said to be strong commutativity preserving (SCP) on 𝒭 if [f (x), f (y)] = [x, y] and is said to be strong anti-commutativity preserving (SACP) on 𝒭 if f (x) ◦ f (y) = x ◦ y for all x, y ∈𝒭.
Sandhu Gurninder S.   +2 more
doaj   +1 more source

A Note on Multiplicative (Generalized) (α, β)-Derivations in Prime Rings

open access: yesAnnales Mathematicae Silesianae, 2019
Let R be a prime ring with center Z(R). A map G : R →R is called a multiplicative (generalized) (α, β)-derivation if G(xy)= G(x)α(y)+β(x)g(y) is fulfilled for all x; y ∈ R, where g : R → R is any map (not necessarily derivation) and α; β : R → R are ...
Rehman Nadeem ur   +2 more
doaj   +1 more source

On Equality of Certain Derivations of Lie Algebras

open access: yesDiscussiones Mathematicae - General Algebra and Applications, 2019
Let L be a Lie algebra. A derivation α of L is a commuting derivation (central derivation), if α (x) ∈ CL (x) (α (x) ∈ Z (L)) for each x ∈ L. We denote the set of all commuting derivations (central derivations) by 𝒟 (L) (Derz (L)).
Amiri Azita   +2 more
doaj   +1 more source

Approximation of additive functional equations in NA Lie C*-algebras

open access: yesDemonstratio Mathematica, 2018
In this paper, by using fixed point method, we approximate a stable map of higher *-derivation in NA C*-algebras and of Lie higher *-derivations in NA Lie C*-algebras associated with the following additive functional ...
Wang Zhihua, Saadati Reza
doaj   +1 more source

On certain functional equation related to derivations

open access: yesOpen Mathematics
In this article, we prove the following result. Let n≥3n\ge 3 be some fixed integer and let RR be a prime ring with char(R)≠(n+1)!2n−2{\rm{char}}\left(R)\ne \left(n+1)\!{2}^{n-2}.
Marcen Benjamin, Vukman Joso
doaj   +1 more source

Home - About - Disclaimer - Privacy