Results 41 to 50 of about 507 (91)
Jordan {g,h}-derivations on triangular algebras
In this article, we give a sufficient and necessary condition for every Jordan {g,h}-derivation to be a {g,h}-derivation on triangular algebras. As an application, we prove that every Jordan {g,h}-derivation on τ(N)\tau ({\mathscr{N}}) is a {g,h ...
Kong Liang, Zhang Jianhua
doaj +1 more source
On Jordan ideals and left (θ, θ)‐derivations in prime rings
Let R be a ring and S a nonempty subset of R. Suppose that θ and ϕ are endomorphisms of R. An additive mapping δ : R → R is called a left (θ, ϕ)‐derivation (resp., Jordan left (θ, ϕ)‐derivation) on S if δ(xy) = θ(x)δ(y) + ϕ(y)δ(x) (resp., δ(x2) = θ(x)δ(x) + ϕ(x)δ(x)) holds for all x, y ∈ S.
S. M. A. Zaidi +2 more
wiley +1 more source
Jordan triple (α,β)-higher ∗-derivations on semiprime rings
In this article, we define the following: Let N0{{\mathbb{N}}}_{0} be the set of all nonnegative integers and D=(di)i∈N0D={\left({d}_{i})}_{i\in {{\mathbb{N}}}_{0}} a family of additive mappings of a ∗\ast -ring RR such that d0=idR{d}_{0}=i{d}_{R}. DD is
Ezzat O. H.
doaj +1 more source
Approximation of quadratic Lie ∗-derivations on ρ-complete convex modular algebras
In this paper, we investigate stable approximation of almost quadratic Lie ∗ -derivations associated with approximate quadratic mappings on ρ -complete convex modular algebras χρ by using Δ2 -condition via convex modular ρ.
Hark-Mahn Kim +2 more
semanticscholar +1 more source
On derivations and commutativity in prime rings
Let R be a prime ring of characteristic different from 2, d a nonzero derivation of R, and I a nonzero right ideal of R such that [[d(x), x], [d(y), y]] = 0, for all x, y ∈ I. We prove that if [I, I]I ≠ 0, then d(I)I = 0.
Vincenzo De Filippis
wiley +1 more source
Derivations of higher order in semiprime rings
Let R be a 2‐torsion free semiprime ring with derivation d. Supposed d2n is a derivation of R, where n is a positive integer. It is shown that if R is (4n − 2)‐torsion free or if R is an inner derivation of R, then d2n−1 = 0.
Jiang Luh, Youpei Ye
wiley +1 more source
Selected non-holonomic functions in lattice statistical mechanics and enumerative combinatorics
We recall that the full susceptibility series of the Ising model, modulo powers of the prime 2, reduce to algebraic functions. We also recall the non-linear polynomial differential equation obtained by Tutte for the generating function of the q-coloured ...
Boukraa, S., Maillard, J-M.
core +2 more sources
Commutativity results for semiprime rings with derivations
We extend a result of Herstein concerning a derivation d on a prime ring R satisfying [d(x), d(y)] = 0 for all x, y ∈ R, to the case of semiprime rings. An extension of this result is proved for a two‐sided ideal but is shown to be not true for a one‐sided ideal.
Mohammad Nagy Daif
wiley +1 more source
σ-derivations on generalized matrix algebras
Let be a commutative ring with unity, 𝒜, be -algebras, be (𝒜, )-bimodule and 𝒩 be (, 𝒜)-bimodule. The -algebra 𝒢 = 𝒢(𝒜, , 𝒩, ) is a generalized matrix algebra defined by the Morita context (𝒜, , , 𝒩, ξ𝒩, Ω𝒩).
Jabeen Aisha +2 more
doaj +1 more source
Generalized derivations on ideals of prime rings
Let R be a prime ring. By a generalized derivation we mean an additive mapping g W R! R such that g.xy/D g.x/yCxd.y/ for all x;y 2 R where d is a derivation of R.
E. Albaş
semanticscholar +1 more source

