Results 61 to 70 of about 507 (91)
A Note on Skew Derivations and Antiautomorphisms of Prime Rings
In this article, we investigate the behavior of a prime ring which admits a skew derivation satisfying certain functional identities involving an antiautomorphism. We employ tools such as generalized identities and commutativity‐preserving maps to analyze these rings.
Faez A. Alqarni +5 more
wiley +1 more source
On Jordan mappings of inverse semirings
In this paper, the notions of Jordan homomorphism and Jordan derivation of inverse semirings are introduced. A few results of Herstein and Brešar on Jordan homomorphisms and Jordan derivations of rings are generalized in the setting of inverse semirings.
Shafiq Sara, Aslam Muhammad
doaj +1 more source
On Lie ideals and symmetric generalized (α, β)-biderivation in prime ring
Let R be a prime ring with char.R/¤ 2. A biadditive symmetric map WR R!R is called symmetric . ̨;ˇ/-biderivation if, for any fixed y 2R, the map x 7! .x;y/ is a . ̨;ˇ/derivation. A symmetric biadditive map W R R! R is a symmetric generalized .
N. Rehman, Shuliang Huang
semanticscholar +1 more source
A Study of Generalized Differential Identities via Prime Ideals
Let R be a ring and P be a prime ideal of R. The aim of this research paper is to delve into the relationship between the structural properties of the quotient ring R/P and the behavior of generalized derivations in a ring R endowed with an involution.
Ali Yahya Hummdi +4 more
wiley +1 more source
On Jordan triple (σ,τ)-higher derivation of triangular algebra
Let R be a commutative ring with unity, A = Tri(A,M,B) be a triangular algebra consisting of unital algebras A,B and (A,B)-bimodule M which is faithful as a left A-module and also as a right B-module.
Ashraf Mohammad +2 more
doaj +1 more source
On Generalized Derivations and Commutativity of Associative Rings
Let be a ring with center Z(). A mapping f : → is said to be strong commutativity preserving (SCP) on if [f (x), f (y)] = [x, y] and is said to be strong anti-commutativity preserving (SACP) on if f (x) ◦ f (y) = x ◦ y for all x, y ∈.
Sandhu Gurninder S. +2 more
doaj +1 more source
On the geometry underlying a real Lie algebra representation [PDF]
Let $G$ be a real Lie group with Lie algebra $\mathfrak g$. Given a unitary representation $\pi$ of $G$, one obtains by differentiation a representation $d\pi$ of $\mathfrak g$ by unbounded, skew-adjoint operators.
Le-Bert, Rodrigo Vargas
core
On Additivity and Multiplicativity of Centrally Extended (α, β)‐Higher Derivations in Rings
In this paper, the concept of centrally extended (α, β)‐higher derivations is studied. It is shown to be additive in a ring without nonzero central ideals. Also, we prove that in semiprime rings with no nonzero central ideals, every centrally extended (α, β)‐higher derivation is an (α, β)‐higher derivation.
O. H. Ezzat, Attila Gil nyi
wiley +1 more source
Jordan left derivations in infinite matrix rings
Let RR be a unital associative ring. Our motivation is to prove that left derivations in column finite matrix rings over RR are equal to zero and demonstrate that a left derivation d:T→Td:{\mathcal{T}}\to {\mathcal{T}} in the infinite upper triangular ...
Zhang Daochang +3 more
doaj +1 more source
Nonlinear generalized Jordan (σ, Γ)-derivations on triangular algebras
Let R be a commutative ring with identity element, A and B be unital algebras over R and let M be (A,B)-bimodule which is faithful as a left A-module and also faithful as a right B-module.
Alkenani Ahmad N. +2 more
doaj +1 more source

