Results 1 to 10 of about 524 (40)
Let G be a finite group. Let $H, K$ be subgroups of G and $H \backslash G / K$ the double coset space. If Q is a probability on G which is constant on conjugacy classes ( $Q(s^{-1} t s) = Q(t)$ ), then the random walk driven by Q on G ...
Persi Diaconis +2 more
doaj +1 more source
Inverse K-Chevalley formulas for semi-infinite flag manifolds, I: minuscule weights in ADE type
We prove an explicit inverse Chevalley formula in the equivariant K-theory of semi-infinite flag manifolds of simply laced type. By an ‘inverse Chevalley formula’ we mean a formula for the product of an equivariant scalar with a Schubert class, expressed
Takafumi Kouno +3 more
doaj +1 more source
ON THE EXISTENCE OF ADMISSIBLE SUPERSINGULAR REPRESENTATIONS OF $p$-ADIC REDUCTIVE GROUPS
Suppose that $\mathbf{G}$ is a connected reductive group over a finite extension $F/\mathbb{Q}_{p}$ and that $C$ is a field of characteristic $p$. We prove that the group $\mathbf{G}(F)$ admits an irreducible admissible supercuspidal, or equivalently ...
FLORIAN HERZIG +2 more
doaj +1 more source
Corrigendum to ‘Endoscopy for Hecke categories, character sheaves and representations’
We fix an error on a $3$ -cocycle in the original version of the paper ‘Endoscopy for Hecke categories, character sheaves and representations’. We give the corrected statements of the main results.
George Lusztig, Zhiwei Yun
doaj +1 more source
ENDOSCOPY FOR HECKE CATEGORIES, CHARACTER SHEAVES AND REPRESENTATIONS
For a reductive group $G$ over a finite field, we show that the neutral block of its mixed Hecke category with a fixed monodromy under the torus action is monoidally equivalent to the mixed Hecke category of the corresponding endoscopic group $H$ with ...
GEORGE LUSZTIG, ZHIWEI YUN
doaj +1 more source
We introduce a path theoretic framework for understanding the representation theory of (quantum) symmetric and general linear groups and their higher-level generalizations over fields of arbitrary characteristic.
C. BOWMAN, A. G. COX
doaj +1 more source
COCENTERS OF $p$ -ADIC GROUPS, I: NEWTON DECOMPOSITION
In this paper, we introduce the Newton decomposition on a connected reductive $p$ -adic group $G$ . Based on it we give a nice decomposition of the cocenter of its Hecke algebra. Here we
XUHUA HE
doaj +1 more source
Derived equivalences for trigonometric double affine Hecke algebras
The trigonometric double affine Hecke algebra $\mathbf {H}_c$ for an irreducible root system depends on a family of complex parameters c. Given two families of parameters c and $c'$ which differ by integers, we construct the translation ...
Wille Liu
doaj +1 more source
Quantum wreath products and Schur–Weyl duality I
In this paper, the authors introduce a new notion called the quantum wreath product, which is the algebra $B \wr _Q \mathcal {H}(d)$ produced from a given algebra B, a positive integer d and a choice $Q=(R,S,\rho ,\sigma )$ of parameters ...
Chun-Ju Lai +2 more
doaj +1 more source
Stability in the category of smooth mod-p representations of ${\mathrm {SL}}_2(\mathbb {Q}_p)$
Let $p \geq 5$ be a prime number, and let $G = {\mathrm {SL}}_2(\mathbb {Q}_p)$ . Let $\Xi = {\mathrm {Spec}}(Z)$ denote the spectrum of the centre Z of the pro-p Iwahori–Hecke algebra of G with coefficients in a field k of ...
Konstantin Ardakov, Peter Schneider
doaj +1 more source

