Results 1 to 10 of about 577 (33)

Semidefinite bounds for nonbinary codes based on quadruples. [PDF]

open access: yesDes Codes Cryptogr, 2017
For nonnegative integers $q,n,d$, let $A_q(n,d)$ denote the maximum cardinality of a code of length $n$ over an alphabet $[q]$ with $q$ letters and with minimum distance at least $d$. We consider the following upper bound on $A_q(n,d)$. For any $k$, let $
Litjens B, Polak S, Schrijver A.
europepmc   +7 more sources

A combinatorial model for the transition matrix between the Specht and $\operatorname {SL}_2$ -web bases

open access: yesForum of Mathematics, Sigma, 2023
We introduce a new class of permutations, called web permutations. Using these permutations, we provide a combinatorial interpretation for entries of the transition matrix between the Specht and $\operatorname {SL}_2$ -web bases of the irreducible
Byung-Hak Hwang   +2 more
doaj   +1 more source

Hodge-Deligne polynomials of character varieties of free abelian groups

open access: yesOpen Mathematics, 2021
Let FF be a finite group and XX be a complex quasi-projective FF-variety. For r∈Nr\in {\mathbb{N}}, we consider the mixed Hodge-Deligne polynomials of quotients Xr/F{X}^{r}\hspace{-0.15em}\text{/}\hspace{-0.08em}F, where FF acts diagonally, and compute ...
Florentino Carlos, Silva Jaime
doaj   +1 more source

An update on Haiman’s conjectures

open access: yesForum of Mathematics, Sigma
We revisit Haiman’s conjecture on the relations between characters of Kazdhan–Lusztig basis elements of the Hecke algebra over $S_n$ . The conjecture asserts that, for purposes of character evaluation, any Kazhdan–Lusztig basis element is reducible
Alex Corrêa Abreu, Antonio Nigro
doaj   +1 more source

Splines on Cayley graphs of the symmetric group

open access: yesForum of Mathematics, Sigma
A spline is an assignment of polynomials to the vertices of a graph whose edges are labeled by ideals, where the difference of two polynomials labeling adjacent vertices must belong to the corresponding ideal. The set of splines forms a ring. We consider
Nathan R. T. Lesnevich
doaj   +1 more source

Improved covering results for conjugacy classes of symmetric groups via hypercontractivity

open access: yesForum of Mathematics, Sigma
We study covering numbers of subsets of the symmetric group $S_n$ that exhibit closure under conjugation, known as normal sets. We show that for any $\epsilon>0$ , there exists $n_0$ such that if $n>n_0$ and A is a normal ...
Nathan Keller   +2 more
doaj   +1 more source

All Kronecker coefficients are reduced Kronecker coefficients

open access: yesForum of Mathematics, Pi
We settle the question of where exactly do the reduced Kronecker coefficients lie on the spectrum between the Littlewood-Richardson and Kronecker coefficients by showing that every Kronecker coefficient of the symmetric group is equal to a reduced ...
Christian Ikenmeyer, Greta Panova
doaj   +1 more source

Home - About - Disclaimer - Privacy