Results 101 to 110 of about 2,984 (190)
Ostrowski type fractional integral inequalities for MT-convex functions
Some inequalities of Ostrowski type for MT-convex functions via fractional integrals are obtained. These results not only generalize those of [25], but also provide new estimates on these types of Ostrowski inequalities for fractional integrals.
Wenjun Liu
semanticscholar +1 more source
In this paper, we investigate some new Pólya-Szegö type integral inequalities involving the Riemann-Liouville fractional integral operator, and use them to prove some fractional integral inequalities of Chebyshev type, concerning the integral of the ...
S. Ntouyas, P. Agarwal, J. Tariboon
semanticscholar +1 more source
Using variational methods, we investigate the solutions of a class of fractional Schrödinger equations with perturbation. The existence criteria of infinitely many solutions are established by symmetric mountain pass theorem, which extend the results in ...
Li Peiluan, Shang Youlin
doaj +1 more source
Using Shehu integral transform to solve fractional order Caputo type initial value problems
In the present research analysis, linear fractional order ordinary differential equations with some defined condition (s) have been solved under the Caputo differential operator having order α > 0 via the Shehu integral transform technique.
S. Qureshi, Prem Kumar
semanticscholar +1 more source
In this paper, the existence of positive solutions for systems of semipositone singular fractional differential equations with a parameter and integral boundary conditions is investigated. By using fixed point theorem in cone, sufficient conditions which
Hao Xinan, Wang Huaqing
doaj +1 more source
Fractional Sturm-Liouville eigenvalue problems, II
We continue the study of a non self-adjoint fractional three-term Sturm-Liouville boundary value problem (with a potential term) formed by the composition of a left Caputo and left-Riemann-Liouville fractional integral under {\it Dirichlet type} boundary
Dehghan, Mohammad, Mingarelli, Angelo B.
core +1 more source
Well-Posedness of Diffusion-Wave Problem with Arbitrary Finite Number of Time Fractional Derivatives in Sobolev Spaces H^s [PDF]
Mathematics Subject Classification 2010: 26A33, 33E12, 35S10, 45K05.We give the proofs of the existence and regularity of the solutions in the space C^∞ (t > 0;H^(s+2) (R^n)) ∩ C^0(t ≧ 0;H^s(R^n)); s ∊ R, for the 1-term, 2-term,..., n-term time ...
Stojanović, Mirjana
core
On Fractional Helmholtz Equations [PDF]
MSC 2010: 26A33, 33E12, 33C60, 35R11In this paper we derive an analytic solution for the fractional Helmholtz equation in terms of the Mittag-Leffler function.
Samuel, M., Thomas, Anitha
core
Boundary value problem with fractional p-Laplacian operator
The aim of this paper is to obtain the existence of solution for the fractional p-Laplacian Dirichlet problem with mixed derivatives tDTα(|0Dtαu(t)|p-20Dtαu(t)) = f(t,u(t)), t ∈ [0,T], u(0) = u(T) = 0, where 1/p < α < 1, 1 < p < ∞ and f : [0,T] × ℝ → ℝ ...
Torres Ledesma César
doaj +1 more source
Most of the Real systems shows chaotic behavior when they approach complex states. Especially in physical and chemical systems these behaviors define the character of the system. The control of these chaotic behaviors is of very high practical importance
Rajagopal Karthikeyan+1 more
doaj +1 more source