Results 31 to 40 of about 649 (117)

A Refinement of Jensen’s and Minkowski’s Inequalities via Superquadratic Functions

open access: yesInternational Journal of Mathematics and Mathematical Sciences, Volume 2024, Issue 1, 2024.
We provide in this note a different refinement of Jensen’s inequality obtained via superquadratic functions. A refinement of Minkowski’s and Hölder’s inequalities is also established as an application of our refined Jensen’s inequality.
Anton Asare-Tuah   +2 more
wiley   +1 more source

An analysis of exponential kernel fractional difference operator for delta positivity

open access: yesNonlinear Engineering
Positivity analysis for a fractional difference operator including an exponential formula in its kernel has been examined. A composition of two fractional difference operators of order (ν,μ)\left(\nu ,\mu ) in the sense of Liouville–Caputo type operators
Mohammed Pshtiwan Othman
doaj   +1 more source

A local proof of the dimensional Pr\'ekopa's theorem [PDF]

open access: yes, 2014
The aim of this paper is to find an expression for second derivative of the function $\phi(t)$ defined by $$\phi(t) = \lt(\int_V \vphi(t,x)^{-\beta} dx\rt)^{-\frac1{\be -n}},\qquad \beta\not= n,$$ where $U\subset \R$ and $V\subset \R^n$ are open bounded ...
Nguyen, Van Hoang
core  

On some extremalities in the approximate integration

open access: yes, 2010
Some extremalities for quadrature operators are proved for convex functions of higher order. Such results are known in the numerical analysis, however they are often proved under suitable differentiability assumptions. In our considerations we do not use
Wasowicz, Szymon
core   +1 more source

Some new Hermite-Hadamard type inequalities for product of strongly h-convex functions on ellipsoids and balls

open access: yesOpen Mathematics
We establish novel Hermite-Hadamard-type inequalities for the product of two strongly hh-convex functions defined on balls and ellipsoids in multidimensional Euclidean spaces.
Song Jinwen, Li Bufan, Ruan Jianmiao
doaj   +1 more source

Increasing property and logarithmic convexity of functions involving Dirichlet lambda function

open access: yesDemonstratio Mathematica, 2023
In this article, with the help of an integral representation of the Dirichlet lambda function, by means of a monotonicity rule for the ratio of two integrals with a parameter, and by virtue of complete monotonicity and another property of an elementary ...
Qi Feng, Lim Dongkyu
doaj   +1 more source

New Upper Bounds in the Second Kershaw's Double Inequality and its Generalizations [PDF]

open access: yes, 2007
In the paper, new upper bounds in the second Kershaw’s double inequality and its generalizations involving the gamma, psi and polygamma functions are established, some known results are ...
Guo, Senlin, Qi, Feng
core  

Generalisations of Integral Inequalities of Hermite-Hadamard type through Convexity

open access: yes, 2012
In this paper, we establish various inequalities for some differentiable mappings that are linked with the illustrious Hermite-Hadamard integral inequality for mappings whose derivatives are $s$-$(\alpha,m)$-convex.The generalised integral inequalities ...
Bhatti, Muhammad Iqbal   +2 more
core   +1 more source

Extensions for a refinement of the Hermite -Hadamard inequality

open access: yesAnnals of the West University of Timisoara: Mathematics and Computer Science
We extend a refinement of the Hermite-Hadamard inequality to other convex functions, thus some integral of these convex functions can be estimated by series. We also generalize part of this refinement by introducing one more parameter, then the Stolarsky
Miao JinYan, Dragomir Silvestru Sever
doaj   +1 more source

Montgomery identity and Ostrowski-type inequalities via quantum calculus

open access: yesOpen Mathematics, 2021
In this paper, we prove a quantum version of Montgomery identity and prove some new Ostrowski-type inequalities for convex functions in the setting of quantum calculus.
Sitthiwirattham Thanin   +4 more
doaj   +1 more source

Home - About - Disclaimer - Privacy