Results 31 to 40 of about 655 (116)
Integral inequalities via harmonically h-convexity
In this paper, we establish some estimates of the left side of the generalized Gauss-Jacobi quadrature formula for harmonic h-preinvex functions involving Euler’s beta and hypergeometric functions.
Merad Meriem +2 more
doaj +1 more source
Refinements of quantum Hermite-Hadamard-type inequalities
In this paper, we first obtain two new quantum Hermite-Hadamard-type inequalities for newly defined quantum integral. Then we establish several refinements of quantum Hermite-Hadamard inequalities.
Budak Hüseyin +3 more
doaj +1 more source
An alternative proof of Elezovi\'c-Giordano-Pe\v{c}ari\'c's theorem
In the present note, an alternative proof is supplied for Theorem~1 in [N. Elezovi\'c, C. Giordano and J. Pe\v{c}ari\'c, \textit{The best bounds in Gautschi's inequality}, Math. Inequal. Appl.
Guo, Bai-Ni, Qi, Feng
core +1 more source
A completely monotonic function involving the tri- and tetra-gamma functions
The psi function $\psi(x)$ is defined by $\psi(x)=\frac{\Gamma'(x)}{\Gamma(x)}$ and $\psi^{(i)}(x)$ for $i\in\mathbb{N}$ denote the polygamma functions, where $\Gamma(x)$ is the gamma function.
Guo, Bai-Ni, Qi, Feng
core +1 more source
Local fractional integral inequalities of Hermite-Hadamard type involving local fractional integral operators with Mittag-Leffler kernel have been previously studied for generalized convexities and preinvexities.
Vivas-Cortez Miguel +3 more
doaj +1 more source
Advancements in Harmonic Convexity and Its Role in Modern Mathematical Analysis
Convex functions play an integral part in artificial intelligence by providing mathematical guarantees that make optimization more efficient and reliable. In this manuscript, we originate and analyze a novel category of convexity, namely, harmonically trigonometric p‐convex functions, and explore their properties.
Sabila Ali +4 more
wiley +1 more source
Some Completely Monotonic Properties for the (p, g)-Gamma Function [PDF]
MSC 2010: 33B15, 26A51 ...
Krasniqi, Valmir, Merovci, Faton
core
An analysis of exponential kernel fractional difference operator for delta positivity
Positivity analysis for a fractional difference operator including an exponential formula in its kernel has been examined. A composition of two fractional difference operators of order (ν,μ)\left(\nu ,\mu ) in the sense of Liouville–Caputo type operators
Mohammed Pshtiwan Othman
doaj +1 more source
In this note, we define p‐adic mixed Lebesgue space and mixed λ‐central Morrey‐type spaces and characterize p‐adic mixed λ‐central bounded mean oscillation space via the boundedness of commutators of p‐adic Hardy‐type operators on p‐adic mixed Lebesgue space.
Naqash Sarfraz +4 more
wiley +1 more source
A Refinement of Jensen’s and Minkowski’s Inequalities via Superquadratic Functions
We provide in this note a different refinement of Jensen’s inequality obtained via superquadratic functions. A refinement of Minkowski’s and Hölder’s inequalities is also established as an application of our refined Jensen’s inequality.
Anton Asare-Tuah +2 more
wiley +1 more source

