Results 51 to 60 of about 120 (105)
On the characterization of Jensen m-convex polynomials
The main objective of this research is to characterize all the real polynomial functions of degree less than the fourth which are Jensen m-convex on the set of non-negative real numbers. In the first section, it is established for that class of functions
Lara Teodoro +3 more
doaj +1 more source
In this article, the authors introduce Qi’s normalized remainder of the Maclaurin series expansion of Qi’s normalized remainder for the cosine function.
Pei Wei-Juan, Guo Bai-Ni
doaj +1 more source
Uniform Treatment of Integral Majorization Inequalities with Applications to Hermite-Hadamard-Fejér-Type Inequalities and f-Divergences. [PDF]
Horváth L.
europepmc +1 more source
Converses of nabla Pachpatte-type dynamic inequalities on arbitrary time scales
Reverse Pachpatte-type inequalities are concave generalizations of the well-known Bennett-Leindler-type inequalities. We establish reverse nabla Pachpatte-type dynamic inequalities taking account of concavity.
Kayar Zeynep, Kaymakçalan Billur
doaj +1 more source
In this article, we establish Hermite-Hadamard-type inequalities for the two classes of functions X±λ(Ω)={f∈C2(Ω):Δf±λf≥0}{X}_{\pm \lambda }\left(\Omega )=\{f\in {C}^{2}\left(\Omega ):\Delta f\pm \lambda f\ge 0\}, where λ>0\lambda \gt 0 and Ω\Omega is ...
Dragomir Silvestru Sever +2 more
doaj +1 more source
Majorization-type inequalities for (m, M, ψ)-convex functions with applications
In 2001, S. S. Dragomir introduced a generalized class of convexity, the so-called (m,M,ψ)\left(m,M,\psi )-convex functions, which covers many other classes of convexity.
Dragomir Silvestru Sever +2 more
doaj +1 more source
Simpson, midpoint, and trapezoid-type inequalities for multiplicatively s-convex functions
In this study, we establish new generalizations and results for Simpson, midpoint, and trapezoid-type integral inequalities within the framework of multiplicative calculus. We begin by proving a new identity for multiplicatively differentiable functions.
Özcan Serap
doaj +1 more source
New Jensen's bounds for HA-convex mappings with applications to Shannon entropy
The aim of this article is to establish some new extensions and variants of Jensen’s discrete and Simic-type inequalities for HA-convex and uniformly HA-convex functions.
Sayyari Yamin +4 more
doaj +1 more source
An extension of Schweitzer's inequality to Riemann-Liouville fractional integral
This note focuses on establishing a fractional version akin to the Schweitzer inequality, specifically tailored to accommodate the left-sided Riemann-Liouville fractional integral operator.
Abdeljawad Thabet +3 more
doaj +1 more source
Extension of Fejér's inequality to the class of sub-biharmonic functions
Fejér’s integral inequality is a weighted version of the Hermite-Hadamard inequality that holds for the class of convex functions. To derive his inequality, Fejér [Über die Fourierreihen, II, Math. Naturwiss, Anz. Ungar. Akad. Wiss.
Jleli Mohamed
doaj +1 more source

