Results 11 to 20 of about 46 (46)
Inequalities for the generalized trigonometric and hyperbolic functions
In this paper, the authors present some inequalities of the generalized trigonometric and hyperbolic functions which occur in the solutions of some linear differential equations and physics.
Ma Xiaoyan +3 more
doaj +1 more source
Are There Any Natural Physical Interpretations for Some Elementary Inequalities?
We inquire whether there are some fundamental interpretations of elementary inequalities in terms of curvature of a three-dimensional smooth hypersurface in the four-dimensional real ambient space.
Bosko Wladimir G., Suceavă Bogdan D.
doaj +1 more source
On boundedness and compactness of a certain class of kernel operators
New conditions for Lp[0, ∞) − Lq[0, ∞) boundedness and compactness (1 < p, q < ∞) of the map f→w(x)∫a(x)b(x)k(x,y)f(y)v(y)dy with locally integrable weight functions v, w and a positive continuous kernel k(x, y) from the Oinarov’s class are obtained.
Elena P. Ushakova, Oleg V. Besov
wiley +1 more source
On further refinements for Young inequalities
In this paper sharp results on operator Young’s inequality are obtained. We first obtain sharp multiplicative refinements and reverses for the operator Young’s inequality.
Furuichi Shigeru, Moradi Hamid Reza
doaj +1 more source
On Bellman‐Golubov theorems for the Riemann‐Liouville operators
Superposition of Fourier transform with the Riemann ‐ Liouville operators is studied.
Pham Tien Zung, Victor Burenkov
wiley +1 more source
Generalizations of Hölder′s inequality
Some generalized Hölder′s inequalities for positive as well as negative exponents are obtained.
Wing-Sum Cheung
wiley +1 more source
Extension of complete monotonicity results involving the digamma function
By using some analytical techniques, we prove a complete monotonicity property of a certain function involving the (p, k)-digamma function. Subsequently, we derive some inequalities for the (p, k)- digamma function.
Nantomah Kwara
doaj +1 more source
Refinements of Some Recent Inequalities for Certain Special Functions
The aim of this paper is to give some refinements to several inequalities, recently etablished, by P.K. Bhandari and S.K. Bissu in [Inequalities via Hölder’s inequality, Scholars Journal of Research in Mathematics and Computer Science, 2 (2018), no.
Akkouchi Mohamed +1 more
doaj +1 more source
On Improved Simpson‐Type Inequalities via Convexity and Generalized Fractional Operators
In this work, we develop novel Simpson‐type inequalities for mappings with convex properties by employing operators for tempered fractional integrals. These findings expand upon and refine classical results, including those linked to Riemann–Liouville fractional integrals.
Areej A. Almoneef +4 more
wiley +1 more source
Simpson, midpoint, and trapezoid-type inequalities for multiplicatively s-convex functions
In this study, we establish new generalizations and results for Simpson, midpoint, and trapezoid-type integral inequalities within the framework of multiplicative calculus. We begin by proving a new identity for multiplicatively differentiable functions.
Özcan Serap
doaj +1 more source

