Results 21 to 30 of about 1,338 (131)
An equivalent form of Young's inequality with upper bound
Young's integral inequality is complemented with an upper bound to the remainder. The new inequality turns out to be equivalent to Young's inequality, and the cases in which the equality holds become particularly transparent in the new formulation ...
E. Minguzzi, E. Minguzzi
core +2 more sources
On boundedness and compactness of a certain class of kernel operators
New conditions for Lp[0, ∞) − Lq[0, ∞) boundedness and compactness (1 < p, q < ∞) of the map f→w(x)∫a(x)b(x)k(x,y)f(y)v(y)dy with locally integrable weight functions v, w and a positive continuous kernel k(x, y) from the Oinarov’s class are obtained.
Elena P. Ushakova, Oleg V. Besov
wiley +1 more source
Summability of a Tchebysheff system of functions
We consider a special type of Tchebysheff systems of functions {ui(⋅)}in=0 and {Vi(⋅)}in=0 defined on the intervals (0, 1] and [1,+∞), respectively, such that ui(t)=tα0∫t1t1α1∫t11t2α2…∫ti−11tiαidtidti−1…dt1 and ui(t)=tβ0∫1tt1β1∫1t1t2β2…∫1ti−1tiβidtidti−1…dt1.
Z. T. Abdikalikova +2 more
wiley +1 more source
On Opial-type inequality for a generalized fractional integral operator
This article is aimed at establishing some results concerning integral inequalities of the Opial type in the fractional calculus scenario. Specifically, a generalized definition of a fractional integral operator is introduced from a new Raina-type ...
Vivas-Cortez Miguel +3 more
doaj +1 more source
Some new refinements of strengthened Hardy and Pólya–Knopp′s inequalities
We prove a new general one‐dimensional inequality for convex functions and Hardy–Littlewood averages. Furthermore, we apply this result to unify and refine the so‐called Boas′s inequality and the strengthened inequalities of the Hardy–Knopp–type, deriving their new refinements as special cases of the obtained general relation. In particular, we get new
Aleksandra Čižmešija +3 more
wiley +1 more source
On Bellman‐Golubov theorems for the Riemann‐Liouville operators
Superposition of Fourier transform with the Riemann ‐ Liouville operators is studied.
Pham Tien Zung, Victor Burenkov
wiley +1 more source
An application of Hayashi's inequality in numerical integration
This study systematically develops error estimates tailored to a specific set of general quadrature rules that exclusively incorporate first derivatives.
Heilat Ahmed Salem +4 more
doaj +1 more source
An Inequality in Metric Spaces [PDF]
In this note we establish a general inequality valid in metric spaces that is related to the polygonal inequality and admits also a natural geometrical interpretation.
Dragomir, Sever S, Goşa, Anca C
core
In this article, we introduce the notions of generalized fractional integrals for the interval-valued functions (IVFs) of two variables. We establish Hermite-Hadamard (H-H) type inequalities and some related inequalities for co-ordinated convex IVFs by ...
Vivas-Cortez Miguel J. +4 more
doaj +1 more source
Characterization of the monotone polar of subdifferentials
We show that a point is solution of the Minty variational inequality of subdifferential type for a given function if and only if the function is increasing along rays starting from that point.
Lassonde, Marc
core +3 more sources

