Results 11 to 20 of about 1,813 (135)
Strengthened inequalities for the mean width and the ℓ‐norm
Abstract Barthe proved that the regular simplex maximizes the mean width of convex bodies whose John ellipsoid (maximal volume ellipsoid contained in the body) is the Euclidean unit ball; or equivalently, the regular simplex maximizes the ℓ‐norm of convex bodies whose Löwner ellipsoid (minimal volume ellipsoid containing the body) is the Euclidean unit
Károly J. Böröczky+2 more
wiley +1 more source
From Hardy to Rellich inequalities on graphs
Abstract We show how to deduce Rellich inequalities from Hardy inequalities on infinite graphs. Specifically, the obtained Rellich inequality gives an upper bound on a function by the Laplacian of the function in terms of weighted norms. These weights involve the Hardy weight and a function which satisfies an eikonal inequality.
Matthias Keller+2 more
wiley +1 more source
On boundedness and compactness of a certain class of kernel operators
New conditions for Lp[0, ∞) − Lq[0, ∞) boundedness and compactness (1 < p, q < ∞) of the map f→w(x)∫a(x)b(x)k(x,y)f(y)v(y)dy with locally integrable weight functions v, w and a positive continuous kernel k(x, y) from the Oinarov’s class are obtained.
Elena P. Ushakova, Oleg V. Besov
wiley +1 more source
Some new refinements of strengthened Hardy and Pólya–Knopp′s inequalities
We prove a new general one‐dimensional inequality for convex functions and Hardy–Littlewood averages. Furthermore, we apply this result to unify and refine the so‐called Boas′s inequality and the strengthened inequalities of the Hardy–Knopp–type, deriving their new refinements as special cases of the obtained general relation. In particular, we get new
Aleksandra Čižmešija+3 more
wiley +1 more source
On Bellman‐Golubov theorems for the Riemann‐Liouville operators
Superposition of Fourier transform with the Riemann ‐ Liouville operators is studied.
Pham Tien Zung, Victor Burenkov
wiley +1 more source
An estimate for the best constant in the Lp‐Wirtinger inequality with weights
We prove an estimate for the best constant C in the following Wirtinger type inequality ∫02πa|w|p≤C∫02πb|w′|p.
Raffaella Giova, Carlo Sbordone
wiley +1 more source
Extensions of Simpson’s Inequality via Nonnegative Weight Functions and Fractional Operators
In this paper, we present a new version of Simpson‐type inequalities for differentiable functions defined on a subinterval of the positive real axis. The approach involves a nonnegative integrable weight function and provides an identity that refines the classical Simpson inequality by incorporating the first derivative of the function. A key aspect of
Hasan Öğünmez+2 more
wiley +1 more source
A note on maximal operator on ℓ{pn} and Lp(x)(ℝ)
We consider a discrete analogue of Hardy‐Littlewood maximal operator on the generalized Lebesque space ℓ{pn} of sequences defined on ℤ. It is known a necessary and sufficient condition P which guarantees an existence of a real number p > 1 such that the norms in the space ℓ{pn} and in the classical space ℓp are equivalent.
Aleš Nekvinda, Pankaj Jain
wiley +1 more source
Integral inequalities via harmonically h-convexity
In this paper, we establish some estimates of the left side of the generalized Gauss-Jacobi quadrature formula for harmonic h-preinvex functions involving Euler’s beta and hypergeometric functions.
Merad Meriem+2 more
doaj +1 more source
A Generalisation of an Ostrowski Inequality in Inner Product Spaces [PDF]
A generalisation of inner product spaces of an inequality due to Ostrowski and applications for sequences and integrals are ...
Dragomir, Sever S., Gosa, Anca C.
core +2 more sources