Results 21 to 30 of about 1,205 (159)
Some new refinements of strengthened Hardy and Pólya–Knopp′s inequalities
We prove a new general one‐dimensional inequality for convex functions and Hardy–Littlewood averages. Furthermore, we apply this result to unify and refine the so‐called Boas′s inequality and the strengthened inequalities of the Hardy–Knopp–type, deriving their new refinements as special cases of the obtained general relation. In particular, we get new
Aleksandra Čižmešija +3 more
wiley +1 more source
On Bellman‐Golubov theorems for the Riemann‐Liouville operators
Superposition of Fourier transform with the Riemann ‐ Liouville operators is studied.
Pham Tien Zung, Victor Burenkov
wiley +1 more source
Integral inequalities via harmonically h-convexity
In this paper, we establish some estimates of the left side of the generalized Gauss-Jacobi quadrature formula for harmonic h-preinvex functions involving Euler’s beta and hypergeometric functions.
Merad Meriem +2 more
doaj +1 more source
Some New Integral Inequalities via Strong Convexity
We prove some new refined inequalities by using strong convexity. Some refinements of the Chebyšhev’s inequality are considered.
Markos Fisseha Yimer, Zhihua Zhang
wiley +1 more source
An estimate for the best constant in the Lp‐Wirtinger inequality with weights
We prove an estimate for the best constant C in the following Wirtinger type inequality ∫02πa|w|p≤C∫02πb|w′|p.
Raffaella Giova, Carlo Sbordone
wiley +1 more source
Inequalities of Hermite-Hadamard Type for HA-Convex Functions
Some new inequalities of Hermite-Hadamard type for HA-convex functions defined on positive intervals are given.
Dragomir S. S.
doaj +1 more source
Quantum integral inequalities on finite intervals
In this paper, some of the most important integral inequalities of analysis are extended to quantum calculus. These include the Hölder, Hermite-Hadamard, trapezoid, Ostrowski, Cauchy-Bunyakovsky-Schwarz, Grüss, and Grüss-Čebyšev integral inequalities ...
J. Tariboon, S. Ntouyas
semanticscholar +1 more source
Refined and Generalized Versions of Hölder’s Inequality via Schur Convexity of Functions
In this paper, we introduce a class of functions associated with Hölder’s inequality and show the Schur convexities of these functions. With the help of Schur convexity, several improved versions of Hölder’s inequality are established. The results obtained here are the generalizations and refinements of the existing results for Hölder’s inequality.
Shanhe Wu, Raúl E. Curto
wiley +1 more source
A note on maximal operator on ℓ{pn} and Lp(x)(ℝ)
We consider a discrete analogue of Hardy‐Littlewood maximal operator on the generalized Lebesque space ℓ{pn} of sequences defined on ℤ. It is known a necessary and sufficient condition P which guarantees an existence of a real number p > 1 such that the norms in the space ℓ{pn} and in the classical space ℓp are equivalent.
Aleš Nekvinda, Pankaj Jain
wiley +1 more source
An Elementary Proof for the Decomposition Theorem of Wright Convex Functions
The main goal of this paper is to give a completely elementary proof for the decomposition theorem of Wright convex functions which was discovered by C. T. Ng in 1987. In the proof, we do not use transfinite tools, i.e., variants of Rodé’s theorem, or de
Páles Zsolt
doaj +1 more source

