Results 41 to 50 of about 1,205 (159)
Some Hermite–Hadamard Type Inequality for the Operator p,P‐Preinvex Function
The goal of the article is to introduce the operator p,P‐preinvex function and present several features of this function. Also, we establish some Hermite–Hadamard type inequalities for this function.
Mahsa Latifi Moghadam +3 more
wiley +1 more source
On an inequality suggested by Littlewood
We study an inequality suggested by Littlewood, our result refines a result of Bennett. 2000 Mathematics Subject Classification. Primary 26D15.
Gao Peng
doaj
On a more accurate half-discrete Hilbert-type inequality involving hyperbolic functions
In this work, by the introduction of a new kernel function composed of exponent functions with several parameters, and using the method of weight coefficient, Hermite-Hadamard’s inequality, and some other techniques of real analysis, a more accurate half-
You Minghui, Sun Xia, Fan Xiansheng
doaj +1 more source
In this paper, we investigate some new Pólya-Szegö type integral inequalities involving the Riemann-Liouville fractional integral operator, and use them to prove some fractional integral inequalities of Chebyshev type, concerning the integral of the ...
S. Ntouyas, P. Agarwal, J. Tariboon
semanticscholar +1 more source
Advancements in Harmonic Convexity and Its Role in Modern Mathematical Analysis
Convex functions play an integral part in artificial intelligence by providing mathematical guarantees that make optimization more efficient and reliable. In this manuscript, we originate and analyze a novel category of convexity, namely, harmonically trigonometric p‐convex functions, and explore their properties.
Sabila Ali +4 more
wiley +1 more source
On Minkowski's inequality and its application
In the paper, we first give an improvement of Minkowski integral inequality. As an application, we get new Brunn-Minkowski-type inequalities for dual mixed volumes.
Cheung Wing-Sum, Zhao Chang-Jian
doaj
Certain Novel p,q‐Fractional Integral Inequalities of Grüss and Chebyshev‐Type on Finite Intervals
In this article, we investigate certain novel Grüss and Chebyshev‐type integral inequalities via fractional p,q‐calculus on finite intervals. Then, some new Pólya–Szegö–type p,q‐fractional integral inequalities are also presented. The main findings of this article can be seen as the generalizations and extensions of a large number of existing results ...
Xiaohong Zuo +2 more
wiley +1 more source
On improvements of the Rozanova's inequality
In the present paper, we establish some new Rozanova's type integral inequalities involving higher-order partial derivatives. The results in special cases yield some of the interrelated results on Rozanova's inequality and provide new estimates on ...
Cheung Wing-Sum, Zhao Chang-Jian
doaj
Some integral inequalities for operator monotonic functions on Hilbert spaces
Let f be an operator monotonic function on I and A, B∈I (H), the class of all selfadjoint operators with spectra in I. Assume that p : [0.1], →ℝ is non-decreasing on [0, 1].
Dragomir Silvestru Sever
doaj +1 more source
In this article, in light of Jensen-Mercer inequality for functions whose derivatives in the absolute values are convex, some new Hermite-Jensen-Mercer inequalities have been obtained with the help of generalized types of fractional integral operators ...
S. Butt +3 more
semanticscholar +1 more source

